On quantum mechanics of n-particle systems on 2-manifolds - a case study in topology

H.-D. Doebner*, W. Groth, J.D. Hennig
Technical University of Clausthal, Arnold Sommerfeld Institut für Mathematische Physik, Leibnizstrasse 10, 33678 Clausthal-Zellerfeld, Germany

Received 14 May 1998; received in revised form 24 November 1998

Abstract

A system of n particles localized on a smooth manifold P has a topologically nontrivial configuration space M if one assumes that M is built from P via an n-fold product, and that the particles cannot be located at the same point in P at the same time. Because of this property of M, which holds even if P is topologically trivial, the quantization of the system is not unique: there are unitary inequivalent descriptions of its kinematics and dynamics. If the particles are assumed to be identical, further topological effects appear. We study these situations in a unified and strictly geometrical approach and use as an adequate quantization on manifolds M the Borel quantization which is based on Hilbert spaces of square integrable sections of Hermitian line bundles with flat connections. The manifolds M built from $P=\mathbb{R}^{2}$ or compact 2-manifolds P are discussed in detail for distinguishable and identical particles; the unitarily inequivalent quantizations are classified; for $P=\mathbb{R}^{2}$ we calculate the flat connections, the kinematics and the Schrödinger equations for the different quantizations. In Appendix A the situation for $P=\mathbb{R}^{m}, m \geq 3$, is given. © 1999 Elsevier Science B.V. All rights reserved.

Subj. Class.: Quantum mechanics
I99I MSC: 53C07, 53C80, 81S99, 81V99
Keywords: Quantization; Two-dimensional manifolds; Braids

1. Introduction

Quantum mechanics is a global theory.
Consider a nonrelativistic, classical, finite dimensional system and its (smooth) connected configuration manifold M. The system, containing n distinguishable or identical particles,

[^0]is quantized via a quantization map \mathcal{Q} which maps classical observables of the system into the set $S A(\mathcal{H})$ of selfadjoint operators A in some Hilbert space \mathcal{H}.

The topology of M enters \mathcal{Q} because we want to map observables (in particular generalized momentum observables, see Section 2) into the set of differential operators. Essentially, our construction splits into the following steps:
(i) Restricting to systems without internal degrees of freedom, we choose a smooth measure μ on M and realize the space \mathcal{H} of pure states as $L^{2}(M \times \mathbb{C}, \mathrm{d} \mu)$, i.e. by μ-square integrable \mathbb{C}-valued functions on M (sections of the Cartesian product $M \times \mathbb{C}$).
(ii) For these sections of $M \times \mathbb{C}$, a priori, no preferred differentiable structure (i.e. no C^{∞} atlas) on $M \times \mathbb{C}$ is distinguished. To quantize observables as differential operators on a dense domain \mathcal{D} in \mathcal{H} (as in usual quantum mechanics on \mathbb{R}^{n}) one needs a suitable \mathcal{D}, such that differentiation of complex 'functions' on M makes sense (for another argument, based on position observables, see [27]). Hence one has to select a differentiable structure on the set $M \times \mathbb{C}$. A natural selection is to choose a complex smooth line bundle $l(M)$ over M (as sets: $M \times \mathbb{C} \equiv$ total space of $l(M)$) with Hermitean product (ψ, ψ^{\prime}) for sections ψ, ψ^{\prime} of $l(M)$, and to view $\mathcal{H}=L^{2}(M, \mathrm{~d} \mu)$ as the μ-completion of the space of square integrable sections in $l(M): L^{2}(l(M), \mathrm{d} \mu)$ (of course, in the 'measurable' category, $l(M)$ is bundle isomorphic to $M \times \mathbb{C}$). The construction of differential operators then requires the specification of a connection ∇ in $l(M)$. On each $l(M)$ connections exist. In particular, for our quantization, flat connections are of interest (see Section 2.1). The classes of equivalent pairs $(l(M), \nabla)$ with flat ∇ are in a $1: 1$ correspondence to $\pi_{1}^{*}(M)$, the characters of the fundamental group of M, i.e. the homomorphisms $\pi_{1}(M) \rightarrow U(1)$. Hence (selfadjoint) quantum observables modelled via differential operators in $L^{2}(M, \mathrm{~d} \mu)$ may depend, together with the spectrum and eigenfunctions, on the topology, i.e. on global properties of M. If the system has internal degrees of freedom, Hermitean higher dimensional vector bundles appear (see e.g. [10]).
We discuss this situation in the framework of Borel quantization, sketched in Section 2. We choose the case of a system of n distinguishable or n identical particles, localized on an m-dimensional manifold P, denoted as 'physical space' or ' 1 -particle-space' of the n-particle system. The configuration space M of the system is built through P. We describe the topological situation for general physical spaces P (Section 3) and discuss in detail the Borel quantization on \mathbb{R}^{2} and on orientable compact 2-manifolds with genus g (Section 4). The quantization map \mathcal{Q} for generalized position and momentum observables is constructed in Section 4.2 for $P=\mathbb{R}^{2}$, and we determine in Section 4.3 the evolution equation (Schrödinger equation) of the system via Borel quantization.

In our case study a unified and strictly geometrical approach based on Hermitian line bundles is presented. Because of the transparent structure of this formalism new insights are possible and a suggestive view on older results, e.g. on various types of ('exotic') statistics and also on Schrödinger equations for identical particles ('anyons') or distinguishable particles in $P=\mathbb{R}^{2}$. Anyons could have physical relevance if it is justified to restrict a system of n identical particles in \mathbb{R}^{3} to 'two dimensions' in a kind of approximation.

Examples are high temperature superconductivity [20] and the fractional quantum Hall effect [2].

Pecularities of configuration spaces for n identical particles in $P=\mathbb{R}^{2}$ were mentioned already by Fadell and Neuwirth [12] from a mathematical point of view and by Leinaas and Myrheim [21] from a physical one. They were introduced independently into quantum mechanics by Goldin et al. [15], and further related to experimental situations by Wilczek [28,29]; see also [11]. For remarks on the history of anyons we refer to [4,14,22]. The notion of anyons was coined in [29].

2. Borel quantization

2.1. Kinematical part

The quantization of our system starts with a set \mathcal{O} of classical observables, i.e. the subset of 'generalized position observables' which build the real linear space Fun (M) of smooth functions on M and the subset of 'generalized momentum observables' realized through the set $\operatorname{Vec}(M)$ of smooth vector fields on M. Both $\operatorname{Fun}(M)$ and $\operatorname{Vec}(M)$ are Lie algebras, they couple semidirectly, with ideal $\operatorname{Fun}(M)$, and yield the general symmetry algebra of M, the kinematical algebra

$$
S(M)=\operatorname{Fun}(M) \oplus_{\mathrm{s}} \operatorname{Vec}(M)
$$

For technical reasons we restrict $\operatorname{Vec}(M)$ to complete vector fields, $\operatorname{Vec}_{\mathrm{c}}(M)$. They carry a partial Lie algebra structure since complete vector fields need not yield complete commutators. To construct the quantization map $\mathcal{Q}=(\mathbb{Q}, \mathbb{P}): S(M) \longrightarrow S A(\mathcal{H})$ with

$$
\begin{aligned}
& \mathbb{Q}: f \in \operatorname{Fun}(M) \mapsto \mathbb{Q}(f) \in S A(\mathcal{H}), \\
& \mathbb{P}: X \in \operatorname{Vec}_{c}(M) \mapsto \mathbb{P}(X) \in S A(\mathcal{H}),
\end{aligned}
$$

we assume (see details in [1,24]):

- \mathcal{Q} is an isomorphism into $S A(\mathcal{H})$ with respect to the Lie brackets on $S(M)$ and on $S A(\mathcal{H})$ (the algebraic structure of $S(M)$ should survive \mathcal{Q}).
- \mathcal{H} is realized as $L^{2}(l(M), \mathrm{d} \mu)$ (to have the option to map X to a differential operator $\mathbb{P}(X)$ via the choice of a connection ∇ in $l(M)$, as explained in Section 1).
$-\mathbb{P}: X \mapsto \mathbb{P}(X)$ is a local map (representing a physical assumption of causality).
- $\mathbb{Q}(f)$ is the multiplication operator (properties of localized position measurements).

One can show that because of the isomorphism property of \mathcal{Q} the connection has to be flat, which yields a topological restriction for the possibilities to construct $l(M)$. Locality then implies $\mathbb{P}(X)$ to be a first order differential operator. The representations of $S(M)$ eventually lead to a classification theorem [1]:

Irreducible representations of $S(M)$ in $L^{2}(l(M), \mathrm{d} \mu)$ are classified by $\pi_{1}^{*}(M) \times \mathbb{R}$, where $\pi_{\mathrm{j}}^{*}(M)$ classifies the line bundles $l(M)$ over M with flat connection [18], and the elements c of \mathbb{R} yield an additional quantum number, not connected to topology, which gives a path
to nonlinear quantum mechanics [9]. In this sense $\pi_{1}^{*}(M)$ is the gate for the topology of M to enter $\mathcal{Q} . \mathbb{Q}$ and \mathbb{P} are given (up to unitary equivalence) on a common dense domain in $L^{2}(l(M), \mathrm{d} \mu)$ as

$$
\begin{align*}
& \mathbb{Q}(f)=f \tag{1}\\
& \mathbb{P}(X)=\frac{\hbar}{\mathrm{i}} \nabla_{X}+\left(c+\frac{\hbar}{2 \mathrm{i}}\right) \operatorname{div}_{\mu} X, \tag{2}
\end{align*}
$$

with $c \in \hbar \mathbb{R}$ and ∇ as a flat connection (with local connection 1-form ω on M), which can be viewed as a potential

$$
\begin{equation*}
\nabla_{X}=X+\frac{\mathbf{i}}{\hbar} \omega(X) \tag{3}
\end{equation*}
$$

If $l(M)$ is trivializable, ω on M can be chosen globally, and a necessary and sufficient condition for ω_{1} and ω_{2} to belong to equivalent ∇_{1} and ∇_{2} is that $\omega_{1}-\omega_{2}$ is logarithmic exact [18].

This characterizes the quantization of the kinematical algebra of a system on M and gives the quantum Borel kinematics.

2.2. Dynamical part

We introduce now a time dependence to our system characterized kinematically through an irreducible representation of $S(M)$. There are different [7,8] and physically well-motivated methods which give the same type of constraints for evolution equations for pure states $\psi_{t} \in L^{2}(l(M), \mathrm{d} \mu)$. Here we use a quantum analogue of the classical relation

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} f(q(t))=(\mathrm{d} f)(\dot{q}(t))=\left(\dot{q},\left.\operatorname{grad}_{g} f\right|_{q(t)}\right)=p(t)\left(\left.\operatorname{grad}_{g} f\right|_{q(t)}\right) \tag{4}
\end{equation*}
$$

between the time derivative of a function f on M along a path $q(t)$ in M and the momentum p of the system given on M, where M is equipped with a (pseudo-) Riemannian metric g (the masses of the particles are absorbed in g). The analogue of Eq. (4) in \mathcal{H} (with inner product $(\rangle$,$) is written as a relation between expectation values of quantized position$ observables $\mathbb{Q}(f)$ and momentum observables $\mathbb{P}(X), X=\operatorname{grad}_{g} f$, and reads for pure states (for a detailed version, see [8]):

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\langle\psi_{t}, \mathbb{Q}(f) \psi_{t}\right\rangle=\left\langle\psi_{t}, \mathbb{P}\left(\operatorname{grad}_{g} f\right) \psi_{t}\right\rangle \quad \text { for all } f \in \operatorname{Fun}(M) \tag{5}
\end{equation*}
$$

With

$$
\begin{align*}
\rho_{t}(x) & =\left(\psi_{t}(x), \psi_{t}(x)\right) \tag{6}\\
j_{t}^{\nabla}(x) & =\hbar \operatorname{Im}\left(\psi_{t}(x),\left(\operatorname{grad}_{g}^{\nabla} \psi_{t}\right)(x)\right) \tag{7}
\end{align*}
$$

where $\operatorname{grad}_{g}^{\nabla}$ is the lift of grad_{g} to $l(M)$ with respect to ∇, i.e. locally

$$
\left(\operatorname{grad}_{g}^{\nabla} \psi_{t}\right)^{j}=g^{j k}\left(\frac{\partial}{\partial q^{k}}+\frac{\mathrm{i}}{\hbar} \omega_{k}\right) \psi_{t}, \quad \omega=: \omega_{k} \mathrm{~d} q^{k}
$$

Eqs. (5)-(7) lead to a Fokker-Planck type equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \rho_{t}+\operatorname{div}_{g} j_{t}^{\nabla}=c \Delta_{g} \rho_{t}
$$

which is a condition for the evolution of ψ_{t}. One easily checks, that this condition implies the nonlinear evolution equation

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial}{\partial t} \psi_{t}=\left(-\frac{\hbar^{2}}{2} \Delta_{g}^{\nabla}+V\right) \psi_{t}+\mathrm{i} \frac{\hbar c}{2} \frac{\Delta_{g} \rho_{t}}{\rho_{t}} \psi_{t}+R\left[\bar{\psi}_{t}, \psi_{t}\right] \psi_{t} \tag{8}
\end{equation*}
$$

with V a real scalar potential and $R[\bar{\psi}, \psi]$ an arbitrary real function of $\bar{\psi}, \psi$ and its derivatives, containing possibly also vector or tensor potentials. Locally,

$$
\begin{equation*}
\Delta_{g}^{\nabla}=\frac{1}{\sqrt{|\operatorname{det} g|}}\left(\frac{\partial}{\partial q^{j}}+\frac{\mathrm{i}}{\hbar} \omega_{j}\right) \sqrt{|\operatorname{det} g|} g^{j k}\left(\frac{\partial}{\partial q^{k}}+\frac{\mathrm{i}}{\hbar} \omega_{k}\right) \tag{9}
\end{equation*}
$$

holds. Note that Δ_{g}^{∇} is the lift to $l(M)$ of the Laplace-Beltrami operator Δ_{g} on (M, g).

If one is interested only in the free linear part with potential V, i.e. $c=0, R=0$, the result is the usual Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial}{\partial t} \psi_{t}=\left(-\frac{\hbar^{2}}{2} \Delta_{g}^{\nabla}+V\right) \psi_{t} \tag{10}
\end{equation*}
$$

We use the evolution equation (10) in the sequel.

3. Topological properties of configuration manifolds M for n particles on a physical space P

Our system consists of n distinguishable or n identical particles, each of them being localized on the same physical space $P(m:=\operatorname{dim} P \geq 2$). The topological and group theoretical relations between its configuration manifolds M and the corresponding Hermitian line bundle (h.l.b.) on the one side, and the typical (anti-) symmetrization processes on the other, are most transparently described in the language of principal fibre bundles (p.f.b.s):

For the construction of M we accept the following view:
(i) M is built from P via an n-fold product.
(ii) Different (point-like) classical particles cannot be located at the same point in P at the same time.
With (i) and (ii) we get:
Distinguishable particles. Their 'configuration manifold', denoted by $D_{n}(P)$, is $(P \times \cdots \times P) \backslash \Delta$, with the diagonal Δ as the set of points $\left(x_{1}, \ldots, x_{n}\right) \in P \times \cdots \times P$, where $x_{i}=x_{j}$ for some $i \neq j$.

The removal of Δ from $P \times \cdots \times P$ has consequences for the topological classification of line bundles and allows the following construction for:

Identical particles. Consider the right group action r of the permutation group S_{n} :

$$
\begin{aligned}
r: D_{n}(P) \times S_{n} & \longrightarrow D_{n}(P), \\
r_{\sigma}\left(x_{1}, \ldots, x_{n}\right) & :=\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right), \quad \sigma \in S_{n}
\end{aligned}
$$

(i.e. $r_{\sigma^{\prime}} r_{\sigma}=r_{\sigma \sigma^{\prime}}$, corresponding to standard definition of multiplication in S_{n}). Since r is a free and discontinuous action, the quotient

$$
I_{n}(P):=D_{n}(P) / S_{n}
$$

is a smooth manifold with smooth projection $D_{n}(P) \longrightarrow I_{n}(P)$, and it yields the 'configuration manifold' for n identical particles on $P . D_{n}(P)$ is an S_{n}-bundle over $I_{n}(P)$ (a p.f.b. with structure group S_{n}; see e.g. [12]). $\tilde{I}_{n}(P)$ denotes the universal covering of $I_{n}(P)$, which of course is also the universal covering of $D_{n}(P)(\operatorname{dim} M \geq 2)$.

For our quantization procedure outlined in Sections 1 and 2, the interesting geometric objects are flat Hermitian line bundles $l(M)$ for $M=D_{n}(P), I_{n}(P)$ and their fundamental groups. These objects have the following properties:

The fundamental groups of $I_{n}(P)$ and $D_{n}(P)$, denoted by $B_{n, P}:=\pi_{1}\left(I_{n}(P)\right)$ and $C_{n, P}:=\pi_{1}\left(D_{n}(P)\right)$, respectively, are generalized braid and coloured braid groups (for $P=\mathbb{R}^{2}$ we get the usual braid groups $B_{n, \mathbb{R}^{2}}=B_{n}$ and coloured braid groups $C_{n, \mathbb{R}^{2}}=C_{n}$).

For the h.l.b. we have
(i) the sequence of bundle projections between p.f.b.

$$
\begin{equation*}
\tilde{I}_{n}(P) \longrightarrow D_{n}(P) \longrightarrow I_{n}(P), \tag{11}
\end{equation*}
$$

with $\tilde{I}_{n}(P)$ as a $C_{n, P}$-bundle over $D_{n}(P)$ and at the same time as a $B_{n, P}$-bundle over $I_{n}(P)$, while $D_{n}(P)$ is an S_{n}-bundle over $I_{n}(P)$, and
(ii) the exact sequence of groups

$$
\{\mathbf{1}\} \rightarrow C_{n, P} \rightarrow B_{n, P} \rightarrow S_{n} \rightarrow\{\mathbf{1}\}
$$

i.e. $C_{n, P}$ is an invariant subgroup of $B_{n, P}$, and $S_{n}=B_{n, P} / C_{n, P}$.

Concerning flat connections ∇ on h.l.b., we mentioned already that the equivalence classes of all pairs $(l(M), \nabla)$ for given M are classified by $\pi_{1}^{*}(M)$. For their explicit construction take the simply connected covering \tilde{M} of M, which is a $\pi_{1}(M)$-bundle over M. Then for each homomorphism $\alpha \in \pi_{1}^{*}(M)$, consider α as the (left) representation $\pi_{1}(M) \times \mathbb{C} \rightarrow \mathbb{C},(a, z) \mapsto \alpha(a) z$, of $\pi_{1}(M)$ in \mathbb{C}. Define the line bundle $l_{\alpha}(M)$ over M, α-associated to the $\pi_{1}(M)$-bundle \tilde{M} over M :

$$
\begin{equation*}
l_{\alpha}(M):=(\tilde{M} \times \mathbb{C}) /\left(\pi_{1}(M) \times \alpha^{-1}\left(\pi_{1}(M)\right)\right) \tag{12}
\end{equation*}
$$

(short notation: $\left.l_{\alpha}(M):=(\tilde{M} \times \mathbb{C}) / \pi_{1}(M)\right)$.

If $\tilde{\nabla}$ is the standard flat connection in the line bundle $\tilde{M} \times \mathbb{C}$, this factorization yields also a flat connection ∇_{α} on $l_{\alpha}(M)$. By construction, pairs ($l_{\alpha}(M), \nabla_{\alpha}$) are nonequivalent for different α and one gets all flat line bundles over M in this way.

Now, taking $M=I_{n}(P)$, the factorization with respect to each $\alpha \in \pi_{1}^{*}\left(I_{n}(P)\right)=$ $B_{1, P}^{*}$:

$$
\tilde{I}_{n}(P) \times \mathbb{C} \longrightarrow l_{\alpha}\left(I_{n}(P)\right)=\left(\tilde{I}_{n}(P) \times \mathbb{C}\right) / B_{n, P}
$$

splits, corresponding to (11), in a natural way into two steps and gives the line bundles over $D_{n}(P)$ and $I_{n}(P)$ (including the flat connections):
(i) Line bundles over $D_{n}(P)$. Consider $\tilde{I}_{n}(P)$ as the $C_{n, P}$-bundle over $D_{n}(P)$. Then $\alpha \in$ $\pi_{1}^{*}\left(I_{n}(P)\right)$ induces the character $\alpha \mid \pi_{1}\left(D_{n}(P)\right)=: \alpha_{D} \in \pi_{1}^{*}\left(D_{n}(P)\right)$. Factorization of $\tilde{I}_{n}(P) \times \mathbb{C}$ with respect to α_{D} yields a flat h.l.b. $l_{\alpha_{D}}\left(D_{n}(P)\right)=\left(\tilde{I}_{n}(P) \times \mathbb{C}\right) / C_{n, P}$ over the configuration manifold $D_{n}(P)$.
(ii) Line bundles over $I_{n}(P)$. Since $C_{n, P}$ is an invariant subgroup of $B_{n, P}$, we have an α-induced right action of $S_{n}=B_{n, P} / C_{n, P}$ on $l_{\alpha_{D}}\left(D_{n}(P)\right)$ and get $l_{\alpha_{D}}\left(D_{n}(P)\right)$ as an S_{n}-bundle over $l_{\alpha}\left(I_{n}(P)\right)$ and

$$
\begin{equation*}
l_{\alpha}\left(I_{n}(P)\right)=l_{\alpha_{D}}\left(D_{n}(P)\right) / S_{n} \tag{13}
\end{equation*}
$$

as a h.l.b. over the configuration manifold $I_{n}(P)$ for n identical particles.
The topological interpretation of the last fact is the following: For each $\alpha \in \pi_{1}^{*}\left(I_{n}(P)\right)$ the symmetry properties of 'wave functions' on $D_{n}(P)$ (sections in $l_{\alpha_{D}}\left(D_{n}(P)\right.$)) are given by the right action of S_{n} on $l_{\alpha_{D}}\left(D_{n}(P)\right)$, hence they are encoded in the construction of $l_{\alpha}\left(I_{n}(P)\right)$. Correspondingly, the topological effect of an exchange of two identical particles, localized around two distinct points in P can be interpreted as the result of a parallel transport (with respect to the α-induced connection in $l_{\alpha}\left(I_{n}(P)\right.$)) along a noncontractible closed curve c in $I_{n}(P)$ (with nonclosed covering \bar{c} in $D_{n}(P)$). This yields a phase shift for the corresponding 'wave function' on $I_{n}(P)$ (section in $l_{\alpha}\left(I_{n}(P)\right)$). This particle exchange one may call 'pure', if there is no extra topological effect stemming from the nontrivial topology of $D_{n}(P)$, i.e. the exchange is pure if the lift \bar{c} of c has no noncontractible closed parts.

Locally, over an open contractible $U \subset I_{n}(P)$, the two-step factorization of $\tilde{I}_{n}(P) \times \mathbb{C}$ is given by

$$
\left(U \times B_{n, P}\right) \times \mathbb{C} \xrightarrow{/ C_{n, P}}\left(U \times S_{n}\right) \times \mathbb{C} \xrightarrow{/ S_{n}} U \times \mathbb{C} .
$$

Summarizing these facts, we get a commutative diagram for line bundles over configuration spaces (and their universal coverings) of n particles on a physical space P, with vertical projections to the base spaces \mathcal{B} and horizontal bundle factorizations, where not only the base spaces are p.f.b. (over $I_{n}(P)$), but also the corresponding line bundles, with the same structure groups (over $l_{\alpha}\left(I_{n}(P)\right.$)). We add to the diagram two lines: the structure group of \mathcal{B} as a p.f.b. and the fundamental group of \mathcal{B} :

4. Application to Borel quantization for n particles on a 2-manifold

The Borel quantization assumes that the (topological) structure of the 'classical' configuration manifold M survives the quantization map \mathcal{Q}. Hence we can use the above geometrical results to classify nonequivalent quantizations on \mathbb{R}^{2} and on compact orientable 2-manifolds as physical spaces P. In Section 4.1 the characters of $\pi_{1}(M)$ are calculated. Here the commutativity of $U(1)$ simplifies the homomorphic images of the algebraic relations characterizing $\pi_{1}(M)$ considerably. To get the kinematical operators $\mathbb{Q}(f)$ and $\mathbb{P}(X)$ we give the pairs $(l(M), \nabla)$ of flat line bundles and the corresponding Hilbert spaces in Section 4.2 for $P=\mathbb{R}^{2}$, and (see Eq. (10)) the (linear) Schrödinger equation along the lines explained before in Section 4.3.

4.1. U(1)-representations of the fundamental groups

As mentioned in Section 3, the fundamental groups of our configuration spaces are generalizations of usual braid groups B_{n} and coloured braid groups C_{n}. They are given through natural geometric constructions [3,5,13,22], i.e. the topological holonomy effects in M arising from a continuous exchange of the n-particle configurations are translated into algebraic relations in the free group F_{l} of l generators, l depending on n. Factorization of F_{l} by these relations then yields the generalized (coloured) braid groups. In particular, for the case of $P=\mathbb{R}^{2}$, this gives B_{n} and $C_{n}[3,13]$.

We list the fundamental groups together with the defining relations of their generators and their inequivalent $U(1)$-representations for \mathbb{R}^{2} and for compact orientable two-dimensional physical spaces P.

4.1.1. n Distinguishable particles in \mathbb{R}^{2}

(i) Fundamental groups. $\pi_{1}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)$ coincides with the nth coloured braid group C_{n} [3]. C_{n} is defined via the free group F_{l} of $l=n(n-1) / 2$ generators $A_{i j}, i, j \in\{1, \ldots, n\}$, $i<j$, and their inverses $A_{i j}^{-1}$, together with the complete set of defining relations [3]

$$
\begin{aligned}
& A_{r s} A_{i k} A_{r s}^{-1}=A_{i k}, \quad 1 \leq i<k<r<s \leq n, \quad \text { or } \quad 1 \leq i<r<s<k \leq n . \\
& A_{r s} A_{i r} A_{r s}^{-1}=A_{i s}^{-1} A_{i r} A_{i s}, \quad 1 \leq i<r<s \leq n, \\
& A_{r s}^{-1} A_{i r} A_{r s}=A_{i s} A_{i r} A_{i s}^{-1}, \quad 1 \leq i<s<r \leq n, \\
& A_{r s} A_{i s} A_{r s}^{-1}=A_{i s}^{-1} A_{i r}^{-1} A_{i s} A_{i r} A_{i s}, \quad 1 \leq i<r<s \leq n, \\
& A_{r s}^{-1} A_{i s} A_{r s}=A_{i s} A_{i r} A_{i s} A_{i r}^{-1} A_{i s}^{-1}, \quad 1 \leq i<s<r \leq n, \\
& A_{r s} A_{i k} A_{r s}^{-1}=A_{i s}^{-1} A_{i r}^{-1} A_{i s} A_{i r} A_{i k} A_{i r}^{-1} A_{i s}^{-1} A_{i r} A_{i s}, \quad 1 \leq i<r<k<s \leq n . \\
& A_{r s}^{-1} A_{i k} A_{r s}=A_{i s} A_{i r} A_{i s}^{-1} A_{i r}^{-1} A_{i k} A_{i r} A_{i s} A_{i r}^{-1} A_{i s}^{-1}, \quad 1 \leq i<s<k<r \leq n .
\end{aligned}
$$

(ii) Characters. The inequivalent $U(1)$-representations of $\pi_{1}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)$ are classified by the numbers ζ in $\prod_{i, j=j}^{n}[0,2 \pi)_{i j} \equiv[0,2 \pi)^{n(n-1) / 2}$.

For a proof of (ii) observe that, according to the universal property of free groups, each homomorphism $\alpha_{D}: C_{n} \rightarrow U(1)$ is a realization of $A_{i j}$ in $U(1)$, such that the defining relations are fulfilled; commutativity of $U(1)$ yields only trivial relations in $U(1)$ in the present case. Hence each element $\alpha_{D}\left(A_{i j}\right)=\exp i \zeta \in U(1)$ can be chosen arbitrarily. Different choices give inequivalent representations. Hence $\pi_{1}^{*}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)=\prod^{n(n-1) / 2} U(1)$.
(iii) Line bundles with flat connections. The only line bundles over $D_{n}\left(\mathbb{R}^{2}\right)$ with flat connections are trivializable, i.e. bundle isomorphic to $D_{n}\left(\mathbb{R}^{2}\right) \times \mathbb{C}$.

To show this, observe that $\pi_{1}^{*}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)$ characterizes the equivalence classes of pairs $\left(l_{\alpha}\left(D_{n}\left(\mathbb{R}^{2}\right)\right), \nabla_{\alpha}\right)$ with flat $\nabla_{\alpha}, \alpha \in \pi_{1}^{*}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)$. On the other hand, in Section 4.2 we explicitly list all these equivalence classes for trivial (and hence for trivializable) $l_{\alpha}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)$. These pairs already exhaust $\pi_{1}^{*}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)$, i.e. there are no others.

4.1.2. n Identical particles in \mathbb{R}^{2}

(i) Fundamental groups. $\pi_{1}\left(I_{n}\left(\mathbb{R}^{2}\right)\right)$ coincides with the nth braid group B_{n} [3,13]. B_{n} is generated by b_{1}, \ldots, b_{n-1} and the complete set of defining relations $[3,13]$

$$
\begin{aligned}
b_{i} b_{j} & =b_{j} b_{i}, \quad|i-j| \geq 2 \\
b_{i} b_{i+1} b_{i} & =b_{i+1} b_{i} b_{i+1}, \quad i=1, \ldots, n-2 .
\end{aligned}
$$

(ii) Characters. The inequivalent $U(1)$-representations of $\pi_{1}\left(I_{n}\left(\mathbb{R}^{2}\right)\right)$ are classified by the numbers in $[0,2 \pi)$.

To prove (ii), observe, that the nontrivial realizations of the defining relations in $U(1)$ are only $b_{i}=b_{i+1}, i=1, \ldots, n-2$, hence $\pi_{1}^{*}\left(D_{n}\left(\mathbb{R}^{2}\right)\right)=U(1)$.
(iii) Line bundles with flat connections. All line bundles over $I_{n}\left(\mathbb{R}^{2}\right)$ with flat connections are trivializable. (Same arguments as in Section 4.1.1.)

In Sections 4.1.3 and 4.1.4 we discuss compact orientable 2-manifolds (classified up to homeomorphisms by their genus g). We only list the generators of the fundamental groups and the nontrivial realizations of the defining relations in $U(1)$. The computation of the character groups is straightforward and similar as in Sections 4.1.1 and 4.1.2 (see [16]).

4.1.3. n Distinguishable particles on compact orientable 2-manifolds

(i) Fundamental groups. We call $\pi_{1}\left(D_{n}(P)\right)$ the 'generalized coloured braid group' $C_{n, P}$ (see Section 3).

Case $g \geq 1[5] . C_{n, p}$ is generated by $\rho_{i 1}, \rho_{i 2}, \ldots, \rho_{i g}, \tau_{i 1}, \ldots, \tau_{i g}, i=1, \ldots, n$. All defining relations for $C_{n, P}$ become trivial in $U(1)$.

Case $g=0[26] . C_{n, S^{2}}$ is generated by $A_{i j}, i, j=1, \ldots, n, i<j$. The only remaining nontrivial relation in $U(1)$ is $1=A_{1, n} A_{1, n-1}, \ldots, A_{1,3} A_{1,2}$.
(ii) Characters. The inequivalent $U(1)$-representations of $\pi_{1}\left(D_{n}(P)\right)$ are classified by the numbers in $\prod_{i=1}^{2 n g}[0,2 \pi)_{i}$ for $g \geq 1$, and in $[0,2 \pi)_{1,3} \times[0,2 \pi)_{1,4} \times \cdots \times[0,2 \pi)_{n-1, n}$ for $g=0$, i.e. for $P=S^{2}$. There are $(n(n-1) / 2)-1$ independent intervals in the last case.

4.1.4. n Identical particles on compact orientable 2-manifolds

(i) Fundamental groups (see also [30]). We call $\pi_{1}\left(I_{n}(P)\right)$ the 'generalized braid group' $B_{n, P}$ (see Section 3).

Case $g \geq 1[19] . B_{n, P}$ is generated by $b_{1}, \ldots, b_{n-1}, \tau_{1}, \ldots \tau_{g}, \rho_{1}, \ldots, \rho_{g}$. The nontrivial relations in $U(1)$ are $b_{i}=b_{i+1}, i=1, \ldots, n-2$, and $b_{1}^{2}=1$.

Case $g=0$ [13]. $B_{n, S^{2}}=\pi_{1}\left(I_{n}\left(S^{2}\right)\right)$ is generated by b_{1}, \ldots, b_{n-1}. The nontrivial relations in $U(1)$ are $b_{i}=b_{i+1}, i=1, \ldots, n-2$, and $b_{1}^{2(n-1)}=1$.
(ii) Characters. The inequivalent $\mathrm{U}(1)$-representations of $B_{n . P}$ are characterized by the numbers in $\{-1,+1\} \times \prod_{i=1}^{2 g}[0,2 \pi)_{i}$ for $g \geq 1$ and in $\mathbb{N} \pi /(n-1) \cap[0,2 \pi)$ for $g=0$ ($P=S^{2}$).

4.1.5. Results

We collect the results for the $U(1)$-representations of the fundamental groups for distinguishable and identical particles on P, i.e. for $D_{n}(P)$ and $I_{n}(P)$, respectively (for the case of $\mathbb{R}^{m}, m \geq 3$, see Appendix A):

\[

\]

4.2. Representations of the kinematical algebra $S(M)$ for \mathbb{R}^{2} as physical space

With the results in Section 2.1 we construct representations of $S(M)$ up to unitary equivalence for $P=\mathbb{R}^{2}$ in the Hilbert space $L^{2}(l(M), \mathrm{d} \mu), M=D_{n}\left(\mathbb{R}^{2}\right), I_{n}\left(\mathbb{R}^{2}\right)$. By construction $\mathbb{D}(f)$ acts as a multiplication operator f on some dense set $\vartheta \subset L^{2}(l(M), \mathrm{d} \mu)$. For $\mathbb{P}(X)$, $X \in \operatorname{Vec}_{\mathrm{c}}(M)$, which depends on the flat connection ∇ on $l(M)$, we give the result for $n=2$ in Section 4.2.1 and for $n>2$ in Section 4.2.2.
4.2.1. $\mathbb{P}(X)$ for 2 -particle systems
$M=D_{2}\left(\mathbb{R}^{2}\right)$. Use in $P \times P, P=\mathbb{R}^{2}$, coordinates x_{α}^{i}; with α : particle index, $\alpha=1,2$, and i : coordinate index, $i=1,2$.

We mentioned in Sections 4.1.1 and 4.1.2 that the existence of flat connections ∇ on $l(M)$ implies $l\left(D_{2}\left(\mathbb{R}^{2}\right)\right)$ to be trivializable. Following Section 2.1 , each ∇ can be described globally (through a trivializing section in $l(M)$) by the corresponding connection 1 -form ω on M. Two unitary (gauge) equivalent ω^{\prime} and $\omega^{\prime \prime}$ are related through a logarithmic exact 1-form via $(g: M \rightarrow U(1))$

$$
\begin{equation*}
\frac{\mathrm{i}}{\hbar}\left(\omega^{\prime}-\omega^{\prime \prime}\right)=g^{-1} \mathrm{~d} g \tag{14}
\end{equation*}
$$

Consider now the flat connections ${ }^{D} \nabla^{\zeta}$ in $l\left(D^{2}\left(\mathbb{R}^{2}\right)\right.$, which are parametrized through $\zeta \in\left[0,2 \pi\right.$), and are given via the closed connection 1-forms (with $x_{i}=\left(x_{i}^{1}, x_{i}^{2}\right)$):

$$
\begin{align*}
& { }^{D} \omega^{\zeta}\left(x_{1}^{1}, \ldots, x_{2}^{2}\right):=\sum_{i, \alpha=1,2} \omega_{\alpha}^{i, \zeta} \mathrm{~d} x_{\alpha}^{i} \\
& { }^{D} \omega_{1}^{1 \cdot \zeta}=-{ }^{D} \omega_{2}^{1, \zeta}=-\frac{\zeta}{2 \pi} \frac{\left(x_{1}^{2}-x_{2}^{2}\right)}{\left|x_{1}-x_{2}\right|^{2}}, \quad{ }^{D} \omega_{1}^{2, \zeta}=-{ }^{D} \omega_{2}^{2 \cdot \zeta}=\frac{\zeta}{2 \pi} \frac{\left(x_{1}^{1}-x_{2}^{1}\right)}{\left|x_{1}-x_{2}\right|^{2}} \tag{15}
\end{align*}
$$

To find the inequivalent ${ }^{D} \omega^{\zeta}$ we select a convenient $\hat{X} \in \operatorname{Vec}(M)$ and show that Eq. (14), evaluated on \hat{X}, enforces $\zeta^{\prime}-\zeta^{\prime \prime}=2 \pi m, m \in \mathbb{Z}$. We introduce coordinates $x_{S}^{i}=\frac{1}{2}\left(x_{1}^{i}+x_{2}^{i}\right)$, $x_{R}^{i}=\frac{1}{2}\left(x_{1}^{i}-x_{2}^{i}\right), i=1,2$, on $D^{2}\left(\mathbb{R}^{2}\right)=\mathbb{R}_{x_{S}}^{2} \times \dot{\mathbb{R}}_{x_{R}}^{2}:$

$$
D_{\omega^{\zeta}}=\frac{1}{2 \pi} \frac{\zeta}{\left|x_{R}\right|^{2}}\left(-x_{R}^{2} \mathrm{~d} x_{R}^{1}+x_{R}^{1} \mathrm{~d} x_{R}^{2}\right)
$$

and we select \hat{X} as the infinitesimal rotation in $\mathbb{R}_{x_{R}}^{2}$, i.e. $\hat{X}=x_{R}^{1}\left(\partial / \partial x_{R}^{2}\right)-x_{R}^{2}\left(\partial / \partial x_{R}^{1}\right)=$ $(\partial / \partial \phi)\left(\phi\right.$ as the polar angle in $\left.\mathbb{R}_{x_{R}}^{2}\right)$,

$$
\begin{equation*}
{ }^{D} \omega^{\zeta}(X)=\frac{1}{2 \pi} \zeta \tag{16}
\end{equation*}
$$

The restriction to $\{0\} \times S^{1} \subset \mathbb{R}_{x_{S}}^{2} \times \dot{\mathbb{R}}_{x_{R}}^{2}$ now yields for the difference of two connection forms (see Eq. (14)),

$$
\begin{equation*}
g^{-1} \mathrm{~d} g(X)=\mathrm{i} \frac{\partial h}{\partial \phi} \tag{17}
\end{equation*}
$$

where $g=\operatorname{expi} h, h: S^{1} \rightarrow \mathbb{R}$, with $h(2 \pi)=h(0)+2 \pi m, m \in \mathbb{Z}$.
Eq. (16) implies $h(\phi)-h(0)=(1 / 2 \pi)\left(\zeta^{\prime}-\zeta^{\prime \prime}\right) \phi$ and $\zeta^{\prime}-\zeta^{\prime \prime}=2 \pi m, m \in \mathbb{Z}$. Hence the equivalence classes of all ${ }^{D} \omega^{\zeta}$ are characterized by the elements $\zeta \in[0,2 \pi$).

It remains to note that Eq. (15) gives, up to equivalence, all different flat connections on $l(M)$. This is because the equivalence classes $(l(M), \nabla)$ in Section 3 with classification through $\pi_{1}^{*}(M)=U(1)$ (Sections 4.1.1 and 4.1.2) are formally and technically in correspondence with the above calculation.
$M=I_{2}\left(\mathbb{R}^{2}\right)$. The 1 -form ${ }^{D} \omega^{\zeta}$ is invariant under S_{2}; each ${ }^{D} \omega^{\zeta}$ is the pull back of a unique 1-form ${ }^{I} \omega^{\zeta}$ on $I_{2}\left(\mathbb{R}^{2}\right)$. Obviously, ${ }^{I} \omega^{\zeta^{\prime}}$ and ${ }^{I} \omega^{\zeta^{\prime \prime}}$ are gauge equivalent iff the corresponding ${ }^{D} \omega^{\zeta^{\prime}}$ and ${ }^{D} \omega^{\zeta^{\prime \prime}}$ are. Hence we have the same result for ${ }^{I} \omega^{\zeta}$ as for the ${ }^{D} \omega^{\zeta}$.
$\mathbb{P}(X)$. To calculate $\mathbb{P}(X)$, insert ω^{ζ} in Eqs. (2), (3) and get (the line bundles are trivial), for distinguishable as well as for identical particles, on a dense set in $L^{2}\left(l(M), \mathrm{d} x_{1}^{1}, \ldots\right.$, $\mathrm{d} x_{2}^{2}$,

$$
\begin{equation*}
\mathbb{P}^{\zeta, c}(X)=\frac{\hbar}{\mathrm{i}}\left(X+\frac{\mathrm{i}}{\hbar} \omega^{\zeta}(X)+\frac{1}{2} \operatorname{div} X\right)+c \operatorname{div} X \tag{18}
\end{equation*}
$$

with $X \in \operatorname{Vec}_{\mathcal{c}}(M)$. For different $\zeta \in[0,2 \pi)$ or different $c \in \hbar \mathbb{R}$ the $\mathbb{P}^{\zeta} \zeta(X)$, together with the $\mathbb{Q}(f)$, are unitarily inequivalent representations of $S(M)$.

4.2.2. $\mathbb{P}(X)$ for n-particle systems, $n>2$

$M=D_{n}\left(\mathbb{R}^{2}\right)$. Use in $\mathbb{R}_{1}^{2} \times \cdots \times \mathbb{R}_{n}^{2}$ coordinates $x_{\alpha}^{i}, \alpha=1, \ldots, n, i=1,2$, and consider the following connection 1-forms on $D_{n}\left(\mathbb{R}^{2}\right)$, parametrized through $\zeta:=\left\{\zeta_{\alpha, \beta} \in\right.$ $[0,2 \pi) / \alpha<\beta ; \alpha, \beta=1, \ldots, n\}\left(\epsilon_{11}=\epsilon_{22}=0, \epsilon_{12}=-\epsilon_{21}=1\right)$:

$$
\begin{align*}
& { }^{D} \omega^{\zeta}\left(x_{1}^{1}, \ldots, x_{n}^{2}\right):=\sum_{\substack{i=1.2 \\
\alpha=1.2, n}} \omega_{\alpha}^{\zeta, i} \mathrm{~d} x_{\alpha}^{i} \\
& { }^{D} \omega_{\alpha}^{\zeta \cdot i}=\sum_{\beta=1, \ldots, n, \beta>\alpha} \frac{\zeta_{\alpha, \beta}, \epsilon_{i, 2}}{2 \pi} \frac{\epsilon_{i l}\left(x_{\alpha}^{l}-x_{\beta}^{l}\right)}{\left|x_{\alpha}-x_{\beta}\right|^{2}} . \tag{19}
\end{align*}
$$

The ${ }^{D} \omega^{\zeta}$ are invariant under S_{n} and furthermore closed for all $\zeta_{\alpha, \beta} \in \mathbb{R}$; the corresponding line bundles are trivial. Unitary equivalent ${ }^{D} \omega^{\zeta}$ are related through a logarithmic exact 1 -form (see Eq. (14)). It remains to show that the forms in Eq. (19) for different $\zeta=\left\{\zeta_{\alpha, \beta}\right\}$ are pairwise nonequivalent.

We use the results for $n=2$ and the fact that two closed nonequivalent 1-forms on an open region $B \in M$ are also nonequivalent on M.

Take one of the nonvanishing $\zeta_{\alpha \beta}$, say ζ_{12}. We choose $B=\left(\left(U_{1} \times U_{2}\right) \backslash D_{12}\right) \times U_{3} \times$ $\cdots \times U_{n} \subset D_{n}\left(\mathbb{R}^{2}\right)$ with: for $\alpha=1,2$ the U_{α} are open contractible neighbourhoods of $0 \in \mathbb{R}_{\alpha}^{2}, D_{12}$ as the diagonal in $\mathbb{R}_{1}^{2} \times \mathbb{R}_{2}^{2}$; for $\alpha=3, \ldots, n$ the U_{α} are open contractible disjoint sets in \mathbb{R}_{α}^{2}, with $U_{\alpha} \cap U_{1}=\emptyset, U_{\alpha} \cap U_{2}=\emptyset$. Restrict now ${ }^{D} \omega^{\zeta}$ to B. The restriction $\tilde{\omega}^{\zeta}$ then can be written as a sum of a term $\omega^{\zeta 12}$ depending on x_{1}, x_{2} only and a rest term $\omega_{\text {rest }}^{\zeta}$, i.e. $\tilde{\omega}^{\zeta}=\omega^{\zeta 12}+\omega_{\text {rest }}^{\zeta}$. Since $\omega_{\text {rest }}^{\zeta}$ is nonsingular not only on B, but also on the contractible set $U_{1} \times \cdots \times U_{n}$, it is exact, $\omega_{\text {rest }}^{\zeta}=\hbar \mathrm{d} h$ (h real), and hence logarithmic exact on B. Thus, it has no influence on the classification of $\tilde{\omega}^{\zeta}$. The other term $\omega^{\zeta 12}$ coincides with the connection form given in Eq. (15) for two identical particles ($\zeta_{12}=\zeta$). This implies on B, and hence on $D_{n}\left(\mathbb{R}^{2}\right)$, that $\tilde{\omega}^{\zeta^{\prime}}-\tilde{\omega}^{\zeta^{\prime \prime}}$ is logarithmic exact iff $\zeta_{12}^{\prime}-\zeta_{12}^{\prime \prime}=2 \pi m, m \in \mathbb{Z}$.
$M=I_{n}\left(\mathbb{R}^{2}\right)$. For ${ }^{l} \omega^{\zeta}$ we use the arguments for the case $n=2$ in Section 4.2.1. The S_{n} symmetry requires $\zeta_{\alpha \beta}=\zeta, \alpha<\beta$ in ${ }^{D} \omega^{\zeta}$. One shows that Eq. (19) (with analogously defined ${ }^{I} \omega_{\alpha}^{\zeta, i}$, but $\zeta \in[0,2 \pi)$) gives all different flat connections on $l(M)$ via the projection $D_{n}\left(\mathbb{R}^{2}\right) \rightarrow I_{n}\left(\mathbb{R}^{2}\right)$.
$\mathbb{P}(X)$. The $\mathbb{P}(X)$ are, with ${ }^{D} \omega^{\zeta}$ and ${ }^{I} \omega^{\zeta}$, resp., similar to Eq. (18) in the case of two particles. For $M=D_{n}\left(\mathbb{R}^{2}\right)$ we get on a dense set in $L^{2}\left(l(M), \mathrm{d} x_{1}^{1}, \ldots, \mathrm{~d} x_{n}^{2}\right)$:

$$
\begin{equation*}
\mathbb{P}^{\zeta \cdot c}(X)=\frac{\hbar}{\mathrm{i}}\left(X+\frac{\mathrm{i}}{\hbar} D^{\zeta} \omega^{\zeta}(X)+\frac{1}{2} \operatorname{div} X\right)+c \operatorname{div} X, \tag{20}
\end{equation*}
$$

with $X \in \operatorname{Vec}_{\mathrm{c}}(\mathbb{R})$.
For different $\zeta=\left\{\zeta_{\alpha \beta} \in[0,2 \pi) / \alpha<\beta ; \alpha, \beta=1, \ldots, n\right\}$ or different $c \in \hbar \mathbb{R}$ the $\mathbb{P}(X)$, together with the $\mathbb{Q}(f)$, are unitarily inequivalent representations of $S(M)$.

If one replaces ${ }^{D} \omega^{\zeta}$ by ${ }^{I} \omega^{\zeta}$ and $D_{n}\left(\mathbb{R}^{2}\right)$ by $I_{n}\left(\mathbb{R}^{2}\right)$, with $\zeta \in[0,2 \pi)$, one gets the corresponding result for identical particles.

4.3. Evolution equations for \mathbb{R}^{2} as physical space

The last step in the Borel quantization is the description of an evolution (Schrödinger) equation for our system. We discuss n particles on $P=\mathbb{R}^{2}$ with masses $m_{\alpha}, \alpha=1, \ldots, n$, where $m_{\alpha}=m$ in the case of identical particles. We use the above results. $D_{n}\left(\mathbb{R}^{2}\right)$ and $I_{n}\left(\mathbb{R}^{2}\right)$ are furnished with a Riemannian metric g induced from $\mathbb{R}^{2} \times \cdots \times \mathbb{R}^{2}: g_{(i, \alpha)(j, \beta)}=$ $m_{\alpha} \delta_{i j} \delta_{\alpha \beta}$ and $g_{(i \alpha)(j \beta)}=m \delta_{i j} \delta_{\alpha \beta}$, respectively. Insert this g and the connection forms ${ }^{l} \omega^{\varsigma}$ and ${ }^{D} \omega^{\zeta}$ in Eqs. (8), (9) and get for $c=0$ and $R=0$ a linear Schrödinger equation with potential V for
(i) n distinguishable particles on \mathbb{R}^{2} :

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial}{\partial t} \psi=\sum_{\substack{i=1,2 \\ \alpha=1 . \ldots . n}} \frac{-\hbar^{2}}{2 m_{\alpha}}\left(\frac{\partial}{\partial x_{\alpha}^{i}}+\frac{\mathrm{i}}{\hbar}{ }^{D} \omega_{\alpha}^{i, \zeta}\right)^{2} \psi+V \psi \tag{21}
\end{equation*}
$$

where $\psi \in L^{2}\left(D_{n}\left(\mathbb{R}^{2}\right), \mathrm{d} x_{1}^{1}, \ldots, \mathrm{~d} x_{n}^{2}\right), \zeta=\left\{\zeta_{\alpha, \beta}\right\}$, and for
(ii) n identical particles on \mathbb{R}^{2} :

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial}{\partial t} \psi=\sum_{\substack{i=1,2 \\ \alpha=1 . . .}} \frac{-\hbar^{2}}{2 m}\left(\frac{\partial}{\partial x_{\alpha}^{i}}+\frac{\mathrm{i}}{\hbar}{ }^{\prime} \omega_{\alpha}^{i, \zeta}\right)^{2} \psi+V \psi \tag{22}
\end{equation*}
$$

with $\psi \in L^{2}\left(D_{n}\left(\mathbb{R}^{2}\right), \mathrm{d} x_{1}^{1}, \ldots, \mathrm{~d} x_{n}^{2}\right), \zeta \in[0,2 \pi)$, and with S_{n}-invariant potential V.
The $\omega_{\alpha}^{\zeta . i}$ are (gauge) potentials. The choice of ζ characterizes the quantum mechanics of the n distinguishable or identical particles on \mathbb{R}^{2} up to unitary equivalence. Some properties of these quantum systems are known. In the case of identical particles the constituents are 'anyons' (see Section 1). Eq. (22) is the n-anyon Schrödinger equation, which was derived with a path integral quantization or viewed as a Chern-Simons dynamics (see e.g. [22]). This equation was extended to many particle systems by a mean field approximation [20]. Here we presented a strict geometric derivation. Solutions of the n-anyon Schrödinger equation for the harmonic oscillator or the electromagnetic vector potential are known (see e.g. [6]).

The nonlinear term proportional to c and the R-term in Eq. (8) are independent of the topology of M. Hence a nonlinear version of an n-anyon equation contains a nonlinear term $c\left(\Delta_{g} \rho / \rho\right)$ and R depending on $\psi, \bar{\psi}$ and their derivatives.

5. Concluding remarks

Our approach shows the possible physical relevance and especially the geometrical richness of n-particle quantum mechanics on smooth two-dimensional spaces P. We presented a detailed description for $P=\mathbb{R}^{2}$ and discussed compact orientable P. Other two-dimensional manifolds can be treated along the same lines, in particular the Kleinbottle, the torus and the projective plane (these manifolds can be viewed as quotient spaces of \mathbb{R}^{2}), furthermore the N pointed \mathbb{R}^{2}. However, in general the corresponding line bundles are not trivial, and a general method to calculate the connections explicitly and globally in a straightforward way is not at hand. For compact spaces P with dimension $m>2$ we quote the result [17]

$$
\pi_{1}\left(D_{n}(P)\right)=\left(\pi_{1}(P)\right)^{n}, \quad \pi_{1}\left(I_{n}(P)\right)=S_{n} \otimes_{s}\left(\pi_{1}(P)\right)^{n},
$$

which shows that, in contrast to $m=2$, topological pecularities are connected with $\pi_{1}(P)$ only.

Our study is restricted to line bundles, which carry a one-dimensional representation of $\pi_{1}(M)$. In principle also vector bundles (\mathbb{C}^{k}-bundles) can be used. Here k-dimensional representations of the fundamental groups appear, e.g. for $P=\mathbb{R}^{2} k$-dimensional representations of C_{n} and B_{n}; the corresponding constituents of the n-particle system were called plectons [25].

Generally, in a quantization based on \mathbb{C}^{k}-bundles topological effects of 'type I and type II' are known [23,27], which are due to $\pi_{1}(M)$ and the Čech-cohomology groups $H_{C}^{1}(M, U(1))$ with smooth $U(1)$-valued functions as coefficients, respectively. Here type I means effects, which are due to the classification of \mathbb{C}^{k}-bundles with given flat connection, and type II concerns effects depending on the topology of the \mathbb{C}^{k}-bundle without specification of a flat connection. Only type I effects are discussed in the present paper. For line bundles with $P=\mathbb{R}^{2}$ in the case of two distinguishable or two identical particles there are no type II effects because $H_{C}^{1}(M, \underline{U(1)})=H^{2}(M, \mathbb{Z})=0$, but nonequivalent flat line bundles exist, i.e. effects of type I appear.

Acknowledgements

We are indepted to G.A. Goldin, W. Lücke and H.-J. Mann for helpful discussions. WG wants to thank the state of Lower Saxony for financial support through the Graduiertenförderung.

Appendix A. Applications to $P=\mathbb{R}^{m}, m \geq 3$
Borel quantization can be applied to n particles on any smooth P. We give the (known) results for $P=\mathbb{R}^{m}, m \geq 3$, for a comparison with our study in the case of $P=\mathbb{R}^{2}$.
(i) Standard statistics. For $P=\mathbb{R}^{m}, m \geq 3, D_{n}(P)$ is simply connected, hence $C_{n, P}=$ $\{\mathbf{1}\}, B_{n, P}=S_{n}$, and we get a unique line bundle $l_{\alpha}\left(D_{n}(P)\right)=D_{n}(P) \times \mathbb{C}, \alpha \in\{\mathbf{1}\}^{*}$, with standard flat connection for the case of distinguishable particles (cf. the diagram in Section 3).

For identical particles $B_{n}^{*}(P)=S_{n}^{*}=\mathbb{Z}_{2}$ holds, and $l_{\alpha}\left(I_{n}(P)\right)$ gives two cases:
$l_{\alpha}\left(I_{n}(P)\right)=I_{n}(P) \times \mathbb{C}$ for the trivial $\alpha \in \mathbb{Z}_{2}$, and
$l_{\alpha}\left(I_{n}(P)\right) \neq I_{n}(P) \times \mathbb{C}$ for the nontrivial $\alpha \in \mathbb{Z}_{2}$.
The first corresponds to Boson and the second to Fermion statistics.
In comparison to the case of $P=\mathbb{R}^{2}$ (see the interpretation following Eq. (13)), the symmetry properties of 'wave functions' on $D_{n}\left(\mathbb{R}^{m}\right), m \geq 3$, which here are sections ψ of $l_{\alpha}\left(I_{n}\left(\mathbb{R}^{m}\right)\right)$, are given by the representation of S_{n} in $U(1)$, since $l_{\alpha_{D}}\left(D_{n}\left(\mathbb{R}^{m}\right)\right)=$ $D_{n}\left(\mathbb{R}^{m}\right) \times \mathbb{C}$ (see Section 3). Hence the exchange of two identical particles, interpreted via parallel transport along a closed curve in $I_{n}(P)$, yields no phase shift (Boson case) or a phase shift -1 (Fermion case) for ψ.
(ii) Parastatistics. Vector bundles over $I_{n}(P)$ corresponding to higher dimensional representations of S_{n} are interpreted as parastatistics and appear in this approach as follows. Consider the configuration space $D_{n}(P)$. The right action r of S_{n} on $D_{n}(P), r: D_{n}(P) \times S_{n} \rightarrow$ $D_{n}(P)$, induces via pull back a natural left action T of S_{n} on the space of smooth square integrable sections $\psi \in \sec ^{\infty}\left(D_{n}(P) \times \mathbb{C}\right)$, i.e. with $s \in S_{n},(T(s) \psi)(x):=\left(r_{s^{-1}}^{*} \psi\right)(x)$.

Close this space to the n-particle Hilbert space \mathcal{H}. In \mathcal{H} the action T is completely reducible, $T=\oplus T_{\lambda}$, with T_{λ} irreducible and \mathcal{H}_{λ} as the corresponding subspace of \mathcal{H}. The reduction gives $\left(r_{s}^{*} \psi\right)(x)=\left(T_{\lambda}\left(s^{-1}\right) \psi\right)(x)$ for $\psi \in \mathcal{H}_{\lambda} \cap \sec ^{\infty}\left(D_{n}(P) \times \mathbb{C}\right)$, i.e. the ψ are T_{λ}-equivariant functions on $D_{n}(M)$ with 'fibre' $\mathcal{H}_{\lambda}=\mathbb{C}^{k}$.

Collect all representations equivalent to T_{λ} for fixed λ. Then the set of equivariant ψ generates a \mathbb{C}^{k}-bundle, which is T_{λ}-associated to the S_{n} bundle $D_{n}(P)$ over $I_{n}(P)$.

Alternatively, to get the same result, one can consider the S_{n}-bundle $D_{n}(P)$ over $I_{n}(P)$ fibrewise, i.e. restrict the ψ 's to each single S_{n}-orbit in $D_{n}(P)$. Then the action T yields the regular n !-dimensional complex representation $T_{\text {reg }}$ of S_{n}. Each irreducible part T_{λ} of $T_{\text {reg }}$ now defines a C^{k}-bundle, T_{λ}-associated to $D_{n}(P)$.

For $k=1$ we recover the two line bundles in (i) (Boson and Fermion case).
For $k>1$ we get parastatistics. Since we are concerned in this paper with line bundles only, we postpone this case and the corresponding generalizations to arbitrary P and arbitrary dimensions for later investigations.

Note that in quantum Borel kinematics \mathbb{C}^{k}-bundles also appear in a physically and technically different context. If one assumes that the system has k internal degrees of freedom one has to realize \mathcal{H} via square integrable sections in \mathbb{C}^{k}-bundles over M [24], using similar arguments as in Section 1. In this case the classification of flat bundles is given via the set of conjugacy classes in $\operatorname{Hom}\left(\pi_{1}(M), U(k)\right)$.

References

[1] B. Angermann, H.D. Doebner, J. Tolar, Quantum kinematics on smooth manifolds, Lecture Notes in Mathematics 1037 (1983) 171.
[2] D. Arovas, J.R. Schrieffer, F. Wilczek, Fractional statistics and the quantum Hall effect, Phys. Rev. Lett. 53 (1984) 722.
[3] E. Artin, Theory of braids, Ann. Math. 48 (1947) 101.
[4] L.C. Biedenharn, E. Lieb, B. Simon, F. Wilczek, The ancestry of the 'anyon', Phys. Today 8 (1990) 91.
[5] J.S. Birman, On braid groups, Commun. Pure Appl. Math. 22 (1969) 41.
[6] S.S. Chern, C.W. Chu, C.S. Ting (Eds.), Physics and Mathematics of Anyons, World Scientific, Singapore, 1991.
[7] H.-D. Doebner, G.A. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A 162 (1992) 397.
[8] H.-D. Doebner, J.D. Hennig, A quantum mechanical evolution equation for mixed states from symmetry and kinematics, in: B. Gruber (Ed.), Symmetry and Science VIII, Plenum Press, New York, 1995.
[9] H.-D. Doebner, J.D. Hennig, On a path to nonlinear quantum mechanics, in: B. Gruber, M. Ramek (Eds.), Symmetry and Science IX, Plenum Press, New York, 1997.
[10] H.-D. Doebner, H.-J. Mann, Vector bundles over configuration spaces of nonidentical particles: topological potentials and internal degrees of freedom, J. Math. Phys. 38 (8) (1997) 3943.
[11] H.-D. Doebner, J. Tolar, Symmetry and topology of the configuration space and quantization, in: B. Gruber, R. Lenczewski (Eds.), Symmetry and Science II, Plenum Press, New York, 1986.
[12] E. Fadell, L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962) 111.
[13] E. Fadell, J. Van Buskirk, The braid groups on E^{2} and S^{2}, Duke Math. J. 29 (1962) 243.
[14] G.A. Goldin, Predicting 'anyons': the origins of fractional statistics in two-dimensional space, in: B. Gruber, L.C. Biedenharn, H.-D. Doebner (Eds.), Symmetry and Science V, Plenum Press, New York, 1991.
[15] G.A. Goldin, R. Menikoff, D.H. Sharp, Representations of a local current algebra in nonsimply connected spaces and the Aharonov-Bohm effect, J. Math. Phys. 22 (1981) 1664.
[16] W. Groth, Zöpfe und Knoten - Quantenmechanik auf zwei- und dreidimensionalen Mannigfaltigkeiten, Ph.D. Thesis, University of Clausthal, Germany, 1996.
[17] T.D. Imbo, C.S. Imbo, E.C.G. Sudarshan, Identical particles, exotic statistics and braid groups, Phys. Lett. B 234 (1990) l and 103.
[18] B. Kostant, Quantization and unitary representations, Lecture Notes in Mathematics 170 (1970) 87.
[19] Y. Ladegaillerie, Groupes de Tresses et Problème des Mots dans les Groupes de Tresses, Bull. Sci. Math. 2^{e} Serie 100 (1976) 255.
[20] R.B. Laughlin, Superconducting ground state of noninteracting particles obeying fractional statistics, Phys. Rev. Lett. 60 (1988) 2677.
[21] J.M. Leinaas, J. Myrheim, On the theory of identical particles, II Nouvo Cim. B37 (1977) 1.
[22] A. Lerda, Anyons, Lecture Notes in Physics, vol. m14, Springer, Berlin, 1993.
[23] H.-J. Mann, Vector bundles on configuration spaces, in: H.-D. Doebner, P. Nattermann, W. Scherer, Ch. Schulte (Eds.), Group 21, vol. I, World Scientific, Singapore, 1997.
[24] U.A. Mueller, H.-D. Doebner, Borel kinematics of rank k on smooth manifolds, Math. Gen. 26 (1993) 719.
[25] J. Mund, R. Schrader, Hilbert spaces for nonrelativistic and relativistic free plectons, in: S. Albeverio (Ed.), Proceedings of the Conference on Advances in Dynamical Systems and Quantum Physics, World Scientific, Singapore, 1995.
[26] G.P. Scott, Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Phil. Soc. 68 (1970) 605.
[27] R.D. Tscheuschner, Topological spin-statistic relations in quantum field theory, Int. J. Theoret. Phys. 28 (1989) 1269.
[28] F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48 (1982) 1144.
[29] F. Wilczek, Quantum mechanics of fractional-spin particles, Phys. Rev. Lett. 49 (1982) 957.
[30] Y.-S. Wu, Braid groups, anyons and gauge invariance, in: S.S. Chern, C.W. Chu, C.S. Ting (Eds.), Physics and Mathematics of Anyons, World Scientific, Singapore, 1991.

[^0]: * Corresponding author. E-mail: asi@pt.tu-clausthal.de

