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Abstract 

A system of n particles localized on a smooth manifold P has a topologically nontrivial config- 
uration space M if one assumes that M is built from P via an n-fold product, and that the particles 
cannot be located at the same point in P at the same time. Because of this property of M, which 
holds even if P is topologically trivial, the quantization of the system is not unique: there are 
unitary inequivalent descriptions of its kinematics and dynamics. If the particles are assumed to 
be identical, further topological effects appear. We study these situations in a unified and strictly 
geometrical approach and use as an adequate quantization on manifolds M the Borel quantization 
which is based on Hilbert spaces of square integrable sections of Hermitian line bundles with fiat 
connections. The manifolds M built from P = ~2 or compact 2-manifolds P are discussed in detail 
for distinguishable and identical particles; the unitarily inequivalent quantizations are classified; 
for P = ~2 we calculate the fiat connections, the kinematics and the Schr6dinger equations for the 
different quantizations. In Appendix A the situation for P --- ~m, m >_ 3, is given. © 1999 Elsevier 
Science B.V. All rights reserved. 

Subj. Class.: Quantum mechanics 
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1. Introduction 

Quan tum mechanics  is a global  theory. 

Consider  a nonrelativist ic,  classical,  finite d imens iona l  system and its (smooth) connected 

configurat ion manifo ld  M. The system, conta in ing  n dis t inguishable or identical  particles, 
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is quantized via a quantization map Q which maps classical observables of  the system into 

the set SA(7-[) of  selfadjoint operators A in some Hilbert space 7-/. 

The topology of M enters Q because we want to map observables (in particular general- 

ized momentum observables, see Section 2) into the set of  differential operators. Essentially, 

our construction splits into the following steps: 

(i) Restricting to systems without internal degrees of  freedom, we choose a smooth mea- 

sure /Z on M and realize the space 7-[ of  pure states as L2(M x C, d/z), i.e. by 

/z-square integrable C-valued functions on M (sections of  the Cartesian product 

M x C ) .  
(ii) For these sections of  M x C, a priori, no preferred differentiable structure (i.e. no C ~c 

atlas) on M x C is distinguished. To quantize observables as differential operators on a 

dense domain 79 in 7-/(as in usual quantum mechanics on N n) one needs a suitable 79, 

such that differentiation of  complex 'functions' on M makes sense (for another argu- 

ment, based on position observables, see [27]). Hence one has to select a differentiable 

structure on the set M x C. A natural selection is to choose a complex smooth line 
bundle l(M) over M (as sets: M x C --- total space of  l(M)) with Hermitean product 

(0,  ap') for sections ~,  ap' of  I(M),  and to view 7- /=  L2(M, d/z) as the/z-completion 

of  the space of  square integrable sections in l(M) :L2(I(M), d/z) (of course, in the 

'measurable' category, l(M) is bundle isomorphic to M x C). The construction of 

differential operators then requires the specification of  a connection V in l(M). On 

each l(M) connections exist. In particular, for our quantization, fiat connections are of 

interest (see Section 2.1). The classes of  equivalent pairs (l(M), V) with fiat V are in a 

1 : 1 correspondence to zr~ (M), the characters of  the fundamental group of  M, i.e. the 

homomorphisms zq (M) --~ U (1). Hence (selfadjoint) quantum observables modelled 

via differential operators in L 2 (M, d/z) may depend, together with the spectrum and 

eigenfunctions, on the topology, i.e. on global properties of  M. If  the system has inter- 

nal degrees of  freedom, Hermitean higher dimensional vector bundles appear (see e.g. 

[10]). 

We discuss this situation in the framework of  Borel quantization, sketched in Section 2. 

We choose the case of  a system of n distinguishable or n identical particles, localized 

on an m-dimensional manifold P,  denoted as 'physical space' or 'l-particle-space' of 

the n-particle system. The configuration space M of the system is built through P. We 

describe the topological situation for general physical spaces P (Section 3) and discuss in 
detail the Borel quantization on R 2 and on orientable compact 2-manifolds with genus g 

(Section 4). The quantization map Q for generalized position and momentum observables 
is constructed in Section 4.2 for P = N2, and we determine in Section 4.3 the evolution 

equation (Schr6dinger equation) of  the system via Borel quantization. 

In our case study a unified and strictly geometrical approach based on Hermitian line 

bundles is presented. Because of  the transparent structure of  this formalism new insights 
are possible and a suggestive view on older results, e.g. on various types of  ( 'exotic') statis- 

tics and also on Schrtidinger equations for identical particles ( 'anyons ')  or distinguishable 
particles in P = N 2. Anyons could have physical relevance if it is justified to restrict 
a system of n identical particles in N3 to ' two dimensions' in a kind of  approximation. 
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Examples are high temperature superconductivity [20] and the fractional quantum Hall 

effect [2]. 

Pecularities of  configuration spaces for n identical particles in P = R 2 were mentioned 

already by Fadell and Neuwirth [12] from a mathematical point of view and by Leinaas 
and Myrheim [21 ] from a physical one. They were introduced independently into quantum 
mechanics by Goldin et al. [15], and further related to experimental situations by Wilczek 
[28,29]; see also [11 ]. For remarks on the history of anyons we refer to [4,14,22]. The notion 
of anyons was coined in [29]. 

2 .  B o r e l  q u a n t i z a t i o n  

2.1. Kinematical part 

The quantization of our system starts with a set 69 of classical observables, i.e. the subset 

of  'generalized position observables'  which build the real linear space Fun(M) of smooth 
functions on M and the subset of  'generalized momentum observables'  realized through 

the set Vec(M) of smooth vector fields on M. Both Fun(M) and Vec(M) are Lie algebras, 

they couple semidirectly, with ideal Fun(M),  and yield the general symmetry algebra of M, 
the kinematical algebra 

S(M) = Fun(M) ~.~ Vec(M). 

For technical reasons we restrict Vec(M) to complete vector fields, Vecc(M). They carry a 

partial Lie algebra structure since complete vector fields need not yield complete commu- 
tators. To construct the quantization map Q = (Q, P) : S(M) ~ SA(7-[) with 

Q :  f E Fun(M) w-~ Q ( f )  ~ SA(~) ,  

P : X ~ Vecc(M) w-~ P(X)  ~ SA(~) ,  

we assume (see details in [1,24]): 
- Q is an isomorphism into SA(7-[) with respect to the Lie brackets on S(M) and on SA (7-[) 

(the algebraic structure of  S(M) should survive Q). 
- 7-/is realized as Lz(I(M), d#)  (to have the option to map X to a differential operator 

P(X)  via the choice of  a connection V in l(M), as explained in Section 1). 
- P : X w-~ P(X)  is a local map (representing a physical assumption of causality). 

- Q ( f )  is the multiplication operator (properties of  localized position measurements). 
One can show that because of the isomorphism property of  Q the connection has to be 

flat, which yields a topological restriction for the possibilities to construct l(M). Locality 
then implies P (X)  to be a first order differential operator. The representations of  S(M) 
eventually lead to a classification theorem [ 1 ]: 

Irreducible representations of  S(M) in L 2 (l(M), d/z) are classified by rr~ (M) x R, where 
Jr ~ (M) classifies the line bundles l (M) over M with flat connection [ 18], and the elements 
c of  E yield an additional quantum number, not connected to topology, which gives a path 
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tO nonlinear quantum mechanics [9]. In this sense zr~(M) is the gate for the topology of M 
to enter Q. Q and P are given (up to unitary equivalence) on a common dense domain in 
Lz(I(M),  d/z) as 

Q ( f )  = f ,  (1) 

P ( X ) = _ V x +  c +  d iv .  X, (2) 

with c ~ hN and V as a flat connection (with local connection 1-form w on M), which can 

be viewed as a potential 

i 
Vx = X + ~0)(X).  (3) 

If  l (M) is trivializable, o2 on M can be chosen globally, and a necessary and sufficient 

condition for 0)1 and 0)2 to belong to equivalent ~71 and V2 is that 0)1 - o22 is logarithmic 

exact [ 18]. 
This characterizes the quantization of the kinematical algebra of a system on M and gives 

the quantum Borel kinematics. 

2.2. Dynamical part 

We introduce now a time dependence to our system characterized kinematically through 
an irreducible representation of S (M). There are different [7,8] and physically well-motivated 

methods which give the same type of constraints for evolution equations for pure states 
7tt ~ L2(I(M), d/z). Here we use a quantum analogue of the classical relation 

d 
-d~f(q(t))  = ( d f ) 0 ) ( t ) )  = (~), gradg flq(t)) = p(t)(gradg flq(t)) (4) 

between the time derivative of  a function f on M along a path q (t) in M and the momentum 
p of the system given on M, where M is equipped with a (pseudo-) Riemannian metric g 

(the masses of the particles are absorbed in g). The analogue of Eq. (4) in ~ (with inner 
product ( , )) is written as a relation between expectation values of  quantized position 

observables Q ( f )  and momentum observables ~(X) ,  X = gradg f ,  and reads for pure 
states (for a detailed version, see [8]): 

d 
- ~ ( ~ t ,  Q ( / ) ~ t )  = (Tit, P(gradgf)Ttt) for all f ~ Fun(M).  (5) 

With 

pt(x) = (7,t (x), ¢ , (x ) ) ,  

j v  (x) = h Im(  ~t (x), (gradg v ~Pt) (x)), 

where gradg v is the lift of  gradg to l (M)  with respect to V, i.e. locally 

( + , )  (gradgVCt)j = gjk -]- ~0)k l~t, 0) =: Wk dq k, 

(6) 

(7) 
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Eqs. (5)-(7) lead to a Fokker-Planck type equation: 

d 
~ p t  + divg jt v = CAgPt , 

which is a condition for the evolution of ~Pt. One easily checks, that this condition implies 
the nonlinear evolution equation 

ff-~ ( h 2 A v ) i h c A g P t ~ t t + R [ @ , ~ t ] ~ t ,  (8) ih lPt = ~----~ g + V ~rt + ~ Pt 

with V a real scalar potential and R[~, 7t] an arbitrary real function of ~, ~p and its deriva- 
tives, containing possibly also vector or tensor potentials. Locally, 

v 1 ( +  i ) ( +  i ) 
Ag ~ + ~wj ~ g j k  + -~cok (9) 

v is the lift to l(M) of the Laplace-Beltrami operator Ag on holds. Note that Ag 

(M, g). 
If one is interested only in the free linear part with potential V, i.e. c = 0, R = 0, the 

result is the usual Schr6dinger equation 

_ _ _ A  V ih 0t = 2 g + V  Ot. (10) 

We use the evolution equation (10) in the sequel. 

3. Topological properties of configuration manifolds M for n particles on a physical 
space P 

Our system consists of n distinguishable or n identical particles, each of them being 
localized on the same physical space P (m := dim P > 2). The topological and group 
theoretical relations between its configuration manifolds M and the corresponding Hermi- 
tian line bundle (h.l.b.) on the one side, and the typical (anti-) symmetrization processes 
on the other, are most transparently described in the language of principal fibre bundles 

(p.f.b.s): 
For the construction of M we accept the following view: 

(i) M is built from P via an n-fold product. 
(ii) Different (point-like) classical particles cannot be located at the same point in P at the 

same time. 
With (i) and (ii) we get: 
Distinguishable particles. Their 'configuration manifold', denoted by Dn(P), is 

(p × . . .  × p)  \ A, with the diagonal A as the set of points (xj . . . . .  x,,) ¢ P × ..- x P, 

where xi =- xj for some i ~ j .  
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The removal of  A from P x • • • x P has consequences for the topological classification 

of line bundles and allows the following construction for: 
Identical particles. Consider the right group action r of  the permutation group Sn : 

r : Dn(P) x Sn " ~ Dn(P), 

r~(xl . . . . .  Xn) :=  (x~(I) . . . . .  xc,(n)), a ~ Sn 

(i.e. r,,ro = ra,,, corresponding to standard definition of multiplication in Sn). Since r 

is a free and discontinuous action, the quotient 

In(P) := Dn(P)/Sn 

is a smooth manifold with smooth projection Dn (P) ~ In (P) ,  and it yields the 'con- 

figuration manifold '  for n identical particles on P. Dn (P) is an Sn-bundle over In (P) (a 

p.f.b, with structure group Sn; see e.g. [12]). in (P) denotes the universal covering of In (P) ,  
which of course is also the universal coveting of Dn (P) (dim M > 2). 

For our quantization procedure outlined in Sections 1 and 2, the interesting geometric 

objects are flat Hermitian line bundles l(M) for M = Dn ( P), In ( P) and their fundamental 
groups. These objects have the following properties: 

The fundamental groups of In(P) and Dn(P), denoted by Bn,p := rG(In(P)) and 

Cn,p :-- rG(Dn(P)), respectively, are generalized braid and coloured braid groups 
(for P = N2 we get the usual braid groups Bn,e2 = Bn and coloured braid groups 

Cn,R2 = Cn). 
For the h.l.b, we have 

(i) the sequence of bundle projections between p.f.b. 

in(P) ~ Dn(e)  ~ In(P), (11) 

with In(P) as a Cn,p-bundle over Dn(P) and at the same time as a Bn,p-bundle over 
In (P) ,  while Dn (P)  is an Sn-bundle over In (P) ,  and 

(ii) the exact sequence of groups 

{1} - -~  Cn,p ~ B~,t, ~ Sn ~ {1}, 

i.e. Cn,P is an invariant subgroup of Bn,P, and Sn = Bn,p/Cn,p. 
Concerning flat connections V on h.l.b., we mentioned already that the equivalence 

classes of  all pairs (I(M),  V) for given M are classified by yr , (M).  For their explicit con- 
struction take the simply connected coveting M of M, which is a yr! (M)-bundle over 
M. Then for each homomorphism ot ~ zr~(M), consider c~ as the (left) representation 
zrl (M) x C ~ C, (a, z) w-~ ot(a)z, of  7rl (M) in C. Define the line bundle la(M) over M, 
a-associated to the rq (M)-bundle AI over M: 

l~(M) :=  (/~t x C)/ (zq (M) × a - l ( z r l ( M ) ) )  (12) 

(short notation: la(M) :=- ()l) x C)/yrl(M)) .  
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If  ~' is the standard fiat connection in the line bundle &¢ x C, this factorization yields 

also a flat connection V~ on l~ (M). By construction, pairs (l~ (M), V,~) are nonequivalent 

for different a and one gets all flat line bundles over M in this way. 

Now, taking M = L,(P) ,  the factotization with respect to each a • rc~(Ll(P)) = 

B..  e. 

[,I(P) x C ) let(In(P)) = ( in(P)  x C) /Bn .p ,  

splits, corresponding to (11), in a natural way into two steps and gives the line bundles over 

Dn (P)  and L~ (P)  (including the flat connections): 
(i) Line bundles over D,, (P) .  Consider L~ (P)  as the Cn. e-bundle over Dn (P) .  Then a • 

rr~(In(P)) induces the character a I rQ (Dn(P))  =: OtO • 7r~(Dn(P)). Factorization 

of In(P) x C with respect to d o  yields a flat h.l.b, l~o(Dn(P))  = (LI(P) x C) /Cn.p  

over the configuration manifold D,1 (P) .  

(ii) Line bundles over In(P).  Since Cn,p is an invariant subgroup of B,1.p, we have an 

ot-induced tight action of Sn = Bn, e /Cn. e on l~z) (Dn (P))  and get l~ o (Dn (P))  as an 

Sn-bundle over l~ (1,1 ( P ) ) and 

lu (L1 (P))  = lad (Dn (P))/S,1 (13) 

as a h.l.b, over the configuration manifold In (P)  for n identical particles. 
The topological interpretation of the last fact is the following: For each a c rr ~(L, (P))  

the symmetry properties of  'wave functions' on Dn (P)  (sections in l~t~ (Dn (P)) )  are given 
by the tight action of Sn on lc~p (D,  (P)) ;  hence they are encoded in the construction of 

I ,  (/,1 (P)) .  Correspondingly, the topological effect of an exchange of two identical particles, 

localized around two distinct points in P can be interpreted as the result of  a parallel 

transport (with respect to the c~-induced connection in l~ (L1 (P)) )  along a noncontractible 

closed curve c in In (P)  (with nonclosed coveting { in Dn (P)) .  This yields a phase shift for 
the corresponding 'wave function' on L1 (P) (section in l~ (In (P))) .  This particle exchange 
one may call 'pure ' ,  if there is no extra topological effect stemming from the nonttivial 

topology of Dn (P) ,  i.e. the exchange is pure if the lift { of  c has no noncontractible closed 

parts. 
Locally, over an open contractible U C 1,1 (P) ,  the two-step factorization of I,, (P)  x C 

is given by 

(U × Bn.p) x c /C"'( (U x S,,) x C /s,,> U × C. 

Summarizing these facts, we get a commutative diagram for line bundles over configura- 
tion spaces (and their universal coverings) of  n particles on a physical space P,  with vertical 
projections to the base spaces/3 and horizontal bundle factotizations, where not only the 
base spaces are p.f.b. (over In (P)) ,  but also the corresponding line bundles, with the same 
structure groups (over l,~ (In (P))) .  We add to the diagram two lines: the structure group of 

/3 as a p.f.b, and the fundamental group of/3: 
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l ine  bundle  

base space 13 

L , (P)  × C /C,,.e laD(Dn(P)) /s,,> lc~(ln(P)) 

in (P)  /c,,.e /s,, > Dn(P)  > In(P)  

s t r u c t u r e  group  o f  Bn,p 

p . f . b .  13 over  In(P) 

f u n d .  group  o f  13 {1} 

/Cn.p /Sn 
Sn > {1} 

Cn, p Bn, P 

4. Application to Borel quantization for n particles on a 2-manifold 

The Borel quantization assumes that the (topological) structure of the 'classical' config- 
uration manifold M survives the quantization map Q. Hence we can use the above geo- 
metrical results to classify nonequivalent quantizations on R 2 and on compact orientable 
2-manifolds as physical spaces P. In Section 4.1 the characters of 7rl (M) are calculated. 
Here the commutativity of U (1) simplifies the homomorphic images of the algebraic rela- 
tions characterizing zq (M) considerably. To get the kinematical operators Q ( f )  and ffz(X) 
we give the pairs (I(M), V) of flat line bundles and the corresponding Hilbert spaces in 
Section 4.2 for P = ~2, and (see Eq. (10)) the (linear) Schr6dinger equation along the lines 

explained before in Section 4.3. 

4.1. U(1)-representations o f  the fundamental groups 

As mentioned in Section 3, the fundamental groups of our configuration spaces are 
generalizations of usual braid groups Bn and coloured braid groups Cn. They are given 
through natural geometric constructions [3,5,13,22], i.e. the topological holonomy effects 
in M arising from a continuous exchange of the n-particle configurations are translated into 
algebraic relations in the free group F /o f  I generators, l depending on n. Factorization of 
FI by these relations then yields the generalized (coloured) braid groups. In particular, for 
the case of P = ~2, this gives Bn and C, [3,13]. 

We list the fundamental groups together with the defining relations of their generators and 
their inequivalent U (1)-representations for R 2 and for compact orientable two-dimensional 
physical spaces P. 

4.1.1. n Distinguishable particles in ~2 
(i) Fundamental groups, rQ (Dn (R2)) coincides with the nth coloured braid group Cn 

[3]. Cn is defined via the free group Fl of l = n(n -- 1)/2 generators Aij, i, j e {1 . . . . .  n}, 
i < j ,  and their inverses A~ l, together with the complete set of defining relations [3] 
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A r s A i k A ~  1 = A i k ,  1 _ < i < k < r < s < n ,  or 

A r s A i r A ~  1 = A ~ l A i r A i ~ ,  1 < i  < r  < s  < n ,  
I A~,l  A i r A r s  , = A i ~ . A i r A ~  1 < i < s < r < n 

l < i < r < s < k < n .  

= A - I  - t  A , ~ A i s A ~  1 is A i r  A i s A i r A i s ,  1 < i < r < s < n ,  
A - I  -1 A~.l  A i s A r s  = i s A i r A i s A i r  A i s  , 1 < i < s < r < n,  

A r s A i k A ~ l  = A - 1  -1 -1  • is A i r  A i s A i r A i k A i r  A ~  I A i r A i s ,  1 < i < r < k < s < n,  

A ~ l A i k A r s  = A i ~ A i r A ~ l A T - r l A i k . A i r A i ~ . A ~ l A ~  I ,  . . , 1 _< i < s < k < r _< n.  

43 

(ii) Ch a r a c t e r s •  The inequivalent U ( 1 )-representations of zrl ( D,, (•2)) are classified by 
the numbers ~ in I-I~.j=~ [0, 27e)ij  =- [0, 2zr) ' '(n-I)/2 

i< j  
For a proof of (ii) observe that, according to the universal property of free groups, each 

homomorphism C~D : Cn -+ U (1) is a realization of A i j  in U (1), such that the defining rela- 
tions are fulfilled; commutativity of U (1) yields only trivial relations in U (1) in the present 
case. Hence each element ~ D ( A i j )  ---- exp i¢ ~ U(1) can be chosen arbitrarily. Different 
choices give inequivalent representations. Hence Jr~ (D,, (~2)) = [-I,,(n-1)/2 U(1). 

(iii) L i n e  b u n d l e s  w i t h  f l a t  c o n n e c t i o n s .  The only line bundles over D,,(R 2) with fiat 
connections are trivializable, i.e. bundle isomorphic to D,, (R 2) × C. 

To show this, observe that zr~(D,, (~2)) characterizes the equivalence classes of pairs 
, 9 (lc, (D,, (R2)), V~) with fiat re , ,  c¢ E rq (D,  (~-)) .  On the other hand, in Section 4.2 we ex- 

plicitly list all these equivalence classes for trivial (and hence for trivializable) 1~ (D,, (R e ) ). 
These pairs already exhaust zr~ (D,, (~2)), i.e. there are no others. 

4.1.2.  n I d e n t i c a l  p a r t i c l e s  in ~2  

(i) F u n d a m e n t a l  g roups .  7ri (I,, (R2)) coincides with the nth braid group B,, [3,13]. B,, is 

generated by b l . . . . .  b,~_ 1 and the complete set of defining relations [3,13] 

b i b j  = bibg,  li - j [  >_ 2, 

b i b i + l b  i = b i + l b i b i + l ,  i = 1 . . . . .  n - 2 .  

(ii) Charac t e r s •  The inequivalent U(1)-representations of zrl (L,(•2)) are classified by 
the numbers in [0, 2re). 

To prove (ii), observe, that the nontrivial realizations of the defining relations in U(I)  
are only bi = b i + l ,  i = 1 . . . . .  n - 2, hence zr~(D,,(R2)) ---- U(1). 

(iii) L i n e  b u n d l e s  w i t h f l a t  c o n n e c t i o n s .  All line bundles over I,, (~2) with fiat connections 
are trivializable. (Same arguments as in Section 4.1.1.) 

In Sections 4.1.3 and 4.1.4 we discuss compact orientable 2-manifolds (classified up to 
homeomorphisms by their genus g). We only list the generators of the fundamental groups 
and the n o n t r i v i a l  realizations of the defining relations in U(1). The computation of the 
character groups is straightforward and similar as in Sections 4.1.1 and 4.1.2 (see [ 16]). 

4.1.3.  n D i s t i n g u i s h a b l e  p a r t i c l e s  on  c o m p a c t  o r i e n t a b l e  2 - m a n i f o l d s  

(i) F u n d a m e n t a l  g roups .  We call Jr l ( Dn (P))  the ' g e n e r a l i z e d  c o l o u  r ed  b r a i d  g r o u p '  C,,. f, 

(see Section 3). 
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Case g > 1 [5]. Cn,p is generated by Pil, Pi2 . . . . .  Pig, ril . . . . .  rig, i = 1 . . . . .  n. All 
defining relations for Cn, e become trivial in U (1). 

Case g = 0 [26]. Cn,s2 is generated by Ai j ,  i, j = 1 . . . . .  n, i < j .  The only remaining 

nontrivial relation in U(1) is 1 = Al ,nA l ,n - I  . . . . .  AI,3AI,2. 

(ii) Characters. The inequivalent U(1)-representations of  zrl (Dn (P))  are classified by 

l-[2ng [0, 2rr)i fo rg  > 1, andin [0, 2~)1,3 × [0, 2:rr)l,4 × . . .  × [0, 27t ' )n_ l ,  n the numbers in ~ ~i=t 
for g = 0, i.e. for P = S 2. There are (n(n - 1)/2) - 1 independent intervals in the last 

case. 

4.1.4. n Identical particles on compact orientable 2-manifolds 

(i) Fundamental groups (see also [30]). We call Zrl (In ( P ) ) the 'generalized braid group' 

Bn,p (see Section 3). 

Case g > 1 [ 19]. Bn, p is generated by b l . . . . .  bn-  l, r l . . . .  rg, pl . . . . .  pg. The nontrivial 

relations in U(1) are bi = bi+l, i = 1 . . . . .  n - 2, and b~ = 1. 

Case g = 0 [13]. Bn,s2 = zq(In(S2))  is generated by bt . . . . .  bn- l .  The nontrivial 

relations in U(1)a re  bi = bi+l, i = 1 . . . . .  n -  2, and b~ (n-l) = 1. 

(ii) Characters. The inequivalent U(1)-representations of Bn. e are characterized by the 

numbers in { -1 ,  +1} × 1-I~gl [0, 2rr)i for g _> 1 and in ~7r/(n - 1) A [0, 270 for g = 0 
(P  = $2). 

4.1.5. Results 

We collect the results for the U (1)-representations of  the fundamental groups for distin- 

guishable and identical particles on P,  i.e. for Dn (P)  and In (P) ,  respectively (for the case 
of  ~m,  m > 3, see  A p p e n d i x  A):  

p = ~ 2  P compact, dim P = 2 p = ~m,  m > 3 

g = 0  g > l  
D n ( P )  [0, 2zr) "(n-1)/2 [0, 2zr) (n(n-1)/2)-l [0, 2zr) 2ng 1 

In (P)  [0, 2zr) [~zr/(n - 1) N [0, 2zr) { -1 ,  1} { -1 ,  1} 
x [0, 27r) 2g 

4.2. Representations o f  the kinematical algebra S ( M )  f o r  ~2 as physical space 

With the results in Section 2.1 we construct representations of  S ( M )  up to unitary equiva- 
lence for P = E2 in the Hilbert space L z (l(M), d/z), M = Dn (E2), In (R2). By construction 

Q ( f )  acts as a multiplication operator f on some dense set 0 C L2(I (M) ,  d/z). For P(X),  

X 6 Vecc(M), which depends on the flat connection V on l ( M ) ,  we give the result for 
n = 2 in Section 4.2.1 and for n > 2 in Section 4.2.2. 

4.2.1. P ( X )  f o r  2-particle systems 

M = D 2 ( R 2 ) .  Use in P x P,  P = R 2, coordinates x i ;  with a:  particle index, ot = 1, 2, 
and i: coordinate index, i = 1, 2. 
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We mentioned in Sections 4.1.1 and 4.1.2 that the existence of fiat connections V on 

l (M)  implies l(D2(~2)) to be trivializable. Following Section 2.1, each V can be described 

globally (through a trivializing section in l (M))  by the corresponding connection 1-form 

o) on M. Two unitary (gauge) equivalent o9' and w" are related through a logarithmic exact 
l-form via (g • M ~ U(1)) 

i , col/) g - I  ~(o9  - = dg .  (14 )  

Consider now the flat connections DV¢ in /(D2(~2)),  which are parametrized through 

ff ~ [0, 2rr), and are given via the closed connection 1-forms (with xi = (xi I , x~)): 

"og (xl . . . . .  : =  d x / ,  

i ,a=l ,2  

2zr Ix~ - x212' = - 2rr Ixl - x2i 2 '  

To find the inequivalent oog~ we select a convenient ~7 ~ Vec(M) and show that Eq. (14), 

evaluated on X, enforces I '  - ~" = 27r m, m 6 71. We introduce coordinates x~, = -~ (xji +x2) , i  

xRi : l (x  I _  - x~) , i  = 1,2, on D2(~ 2) = IR~s x [~2xR : 

1 

Dog~ _ 2rr IXRI 2 

and we select X as the infinitesimal rotation in ~2 n, i.e. X = x~(8 /Ox  2) - x2 (O/3x~)  = 

(8 /8¢)  (¢ as the polar angle in ~ R ) ,  

1 
DoS(X) = ~-~¢. (16) 

The restr ic t ion to {0} x S l C ~2 s × ~2 R now yie lds  for  the difference of  two connect ion  

forms (see Eq. (14)), 

Oh 
g-1 dg(X)  ---- i ~ ,  (17) 

where g = expih, h • S l ~ ~, with h(2zr) = h(0) + 2zrm, m E 7/. 

Eq. (16) implies h(40 - h(0) = ( l /2rr)(~ ~ - ~ ' ) ¢  and ~' - if" = 2zrm, m 6 7/. Hence 
the equivalence classes of  all oog~ are characterized by the elements ~ 6 [0, 2zr). 

It remains to note that Eq. (15) gives, up to equivalence, all different flat connections 
on l (M) .  This is because the equivalence classes ( l (M),  V) in Section 3 with classifica- 
tion through zr~(M) = U(1) (Sections 4.1.1 and 4.1.2) are formally and technically in 

correspondence with the above calculation. 
M = 12 (~2). The 1-form DW( is invariant under $2; each DOg( is the pull back of  a unique 

l-form 109 ~ on I2 (R2). Obviously, I o9~' and 1 (.0~" are gauge equivalent iff the corresponding 
D ' w¢ and °w¢" are. Hence we have the same result for tog( as for the oog(. 
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P(X).  To calculate P(X) ,  insert (D( in Eqs. (2), (3) and get (the line bundles are trivial), 

for distinguishable as well as for identical particles, on a dense set in L2(I (M) ,  dx I . . . . .  

axe), 
( i ( 1 ) 

p ( , c ( x  ) =  ]-h X + ~ ( D  ( X ) + ~ d i v X  + c d i v X ,  (18) 

with X 6 Vecc(M). For different ( ~ [0, 27r) or different c 6 hN the P( ' " (X) ,  together 
with the Q ( f ) ,  are unitarily inequivalent representations of  S(M) .  

4.2.2. P ( X )  for  n-particle systems, n > 2 
i M = Dn(~2).  Use in N~ x . . .  x Rn 2 coordinatesx~,c¢ = 1 . . . . .  n , i  = 1,2, and 

consider the following connection 1-forms on D~ (R2), parametrized through ( := {ffc~,~ 

[0, 27r)/t~ </3 ;  ct,/3 = 1 . . . . .  n} (Ell -m" E22 : 0, El2 :"  --~21 : 1): 

D(D((XI . . . .  X2) : :  Z D ( i ~  i • (Dot" OXo:, 
i=l.2 

ce~l,....n 
(ot,[4 "il(xla -- xlfl) 

D(D~, i=  ~ 2zr Ixot -- x/~l 2 "  
/~=l....,m/~>~ 

/=1,2 

(19) 

The DO)( a re  invariant under S, and furthermore closed for all (ot,~ 6 R; the corresponding 

line bundles are trivial. Unitary equivalent o(D~ are related through a logarithmic exact 

1-form (see Eq, (14)). It remains to show that the forms in Eq. (19) for different ( = {(ot,~} 
are pairwise nonequivalent. 

We use the results for n = 2 and the fact that two closed nonequivalent 1-forms on an 
open region B E M are also nonequivalent on M. 

Take one of the nonvanishing ( ~ ,  say (12. We choose B = ((Ul x U2) \ D12) × U3 × 
"'" × Un C Dn (~2) with: for ct = 1, 2 the Uot are open contractible neighbourhoods of 
0 E l~ 2, O12 as the diagonal in R~ x 0~2; for ot = 3 . . . . .  n the Us are open contractible 

9 
disjoint sets in ~ ,  with Uot M U1 = 0, Uot A U2 = 0. Restrict now o(D( to B. The restriction 
J then can be written as a sum of a term w¢'Zdepending on xl,  x2 only and a rest term (Drest, 
i.e. ~5( : (D(12 q- forest.( S i n c e  (Drfest is nonsingular not only on B, but also on the contractible 
set UI x . . .  × U,,  it is exact, (Dr~est = h dh (h real), and hence logarithmic exact on B. 
Thus, it has no influence on the classification of i f / .  The other term O) (12 coincides with the 
connection form given in Eq. (15) for two identical particles ((12 = ().  This implies on B, 
and hence on  D n ( R 2 ) ,  that &~' - (5~!' is logarithmic e x a c t  i f f ( ~  2 - ( ~  = 2zrm, m ~ 2~. 

M = In(R2). For lw(  we use the arguments for the case n = 2 in Section 4.2.1. The 

Sn symmetry requires (ot/~ = ( ,  ot < /3  in ° w ( .  One shows that Eq. (19) (with analogously 

defined t(D~,i, but ( ~ [0, 2zr)) gives all different flat connections on l (M)  via the projection 
Dn(~2) ~ I ,(N2).  

P(X).  The P(X)  are, with z)w( and I(D¢, resp., similar to Eq. (18) in the case of  two 
particles. For M = Dn (R 2) we get on a dense set in Lz( I (M) ,  dx  I . . . . .  dx2): 
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( i  , )  
pC,c(X )=_h X +  D c o ¢ ( X ) + - d i v X  + c d i v X .  

2 

47 

(20) 

with X E Vecc(~). 

For different ~ = { ~  ~ [0, 2zr)/o: < /3; or,/3 = 1 . . . . .  n} or different c ~ h ~ t b e  ~(X),  

together with the Q ( f ) ,  are unitarily inequivalent representations of  S(M).  
If  one replaces Dw¢ by Ico~ and D,,(~ 2) by L,(~2), with ~ 6 [0, 2Jr), one gets the 

corresponding result for identical particles. 

4.3. Evolution equations for ~2 as physical space 

The last step in the Borel quantization is the description of an evolution (Schr6dinger) 

equation for our system. We discuss n particles on P = R 2 with masses m~, a ----- 1 . . . . .  n, 

where m~ = m in the case of  identical particles. We use the above results. D,, (~2) and 
. . .  ~2 I,~ (~2) are furnished with a Riemannian metric g induced from ~2 × × : g(i.~ )(j./~ ) ~- 

ma~ijScq3 and g ( i a ) ( j f l )  = rn6ijSc¢[5,  respectively. Insert this g and the connection forms/~oc 

and DoS in Eqs. (8), (9) and get for c = 0 and R = 0 a linear Schr6dinger equation with 

potential V for 

(i) n distinguishable particles on ~2: 

-) 

i = 1 , 2  
~ = l  , , . . .n 

where ~ E L2(D,(•2), dx I . . . . .  dx2), ~" = {~'~.#}, and for 

(ii) n identical particles on ~2: 

i = 1 , 2  
c~=[, ...n 

(22) 

2 with 7r 6 L"(D,,(~ ), dx I . . . . .  dx~), ~ ~ [0, 2rr), and with S,,-invariant potential V. 

The oJ~ 'i are (gauge) potentials. The choice of  ~ characterizes the quantum mechanics of 

the n distinguishable or identical particles on ~2 up to unitary equivalence. Some properties 

of these quantum systems are known. In the case of  identical particles the constituents are 

'anyons'  (see Section 1). Eq. (22) is the n-anyon Schr6dinger equation, which was derived 

with a path integral quantization or viewed as a Chern-Simons dynamics (see e.g. [22]). This 
equation was extended to many particle systems by a mean field approximation [20]. Here 

we presented a strict geometric derivation. Solutions of  the n-anyon Schr6dinger equation 

for the harmonic oscillator or the electromagnetic vector potential are known (see e.g. [6]). 
The nonlinear term proportional to c and the R-term in Eq. (8) are independent of the 

topology of M. Hence a nonlinear version of  an n-anyon equation contains a nonlinear term 

c (Ag p /p )  and R depending on ~p, ~ and their derivatives. 
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5. Concluding remarks  

Our approach shows the possible physical relevance and especially the geometrical rich- 

ness of n-particle quantum mechanics on smooth two-dimensional spaces P. We pre- 
sented a detailed description for P = j~2 and discussed compact orientable P. Other 

two-dimensional manifolds can be treated along the same lines, in particular the Klein- 

bottle, the torus and the projective plane (these manifolds can be viewed as quotient spaces 
of Re), furthermore the N pointed ~2. However, in general the corresponding line bundles 

are not trivial, and a general method to calculate the connections explicitly and globally in a 

straightforward way is not at hand. For compact spaces P with dimension m > 2 we quote 

the result [17] 

:rq(Drt(P)) = (sr l(P))  n, :rrl(In(P)) = Sn®s(rCl(P)) n, 

which shows that, in contrast to m = 2, topological pecularities are connected with 7"f I (P) 

only. 
Our study is restricted to line bundles, which carry a one-dimensional representation 

of yrl (M). In principle also vector bundles (Ck-bundles) can be used. Here k-dimensional 
representations of the fundamental groups appear, e.g. for P = [~2 k-dimensional represen- 

tations of C,~ and Bn; the corresponding constituents of the n-particle system were called 

plectons [25]. 

Generally, in a quantization based on Ck-bundles topological effects of 'type I and type II '  

are known [23,27], which are due to zq (M) and the Cech-cohomology groups Hc I (M, U ( 1 )) 
with smooth U (1)-valued functions as coefficients, respectively. Here type I means effects, 

which are due to the classification of Ck-bundles with given flat connection, and type II 
concerns effects depending on the topology of the C k-bundle without specification of a flat 

connection. Only type I effects are discussed in the present paper. For line bundles with 
p = [~2 in the case of two distinguishable or two identical particles there are no type II 
effects because H 1 (M, U (1)) = H 2 (M, 2e) = 0, but nonequivalent flat line bundles exist, 

i.e. effects of type I appear. 
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Appendix A. Applications to P = ~m, m >_ 3 

Borel quantization can be applied to n particles on any smooth P. We give the (known) 
results for P = ~m, m > 3, for a comparison with our study in the case of P = ~2. 
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(i) Standard statistics. For P = ~m, m > 3, Dn (P)  is simply connected, hence Cn. p = 

{1}, Bn.p = Sn, and we get a unique line bundle Ia(Dn(P))  = Dn(P)  x C, a 6 {1}*, 
with standard flat connection for the case of  distinguishable particles (cf. the diagram in 
Section 3). 

For identical particles B* (P)  = Sn* = Y2 holds, and l~ ( I ,  (P) )  gives two cases: 

I~(L,(P))  = In(P)  x C for the trivial ~ ~ 7/2, and 
l~ (L, (P))  ¢ L~ (P)  x C for the nontrivial a ~ ?/2. 
The first corresponds to Boson and the second to Fermion statistics. 

In comparison to the case of  P = ~2 (see the interpretation following Eq. (13)), the 
symmetry properties of  'wave functions' on Dn(~m),  m > 3, which here are sections 

gz of lc~(L,(Rm)), are given by the representation of S,z in U(1), since lc~o(D,,(~m)) = 

D,, (j~m) x C (see Section 3). Hence the exchange of two identical particles, interpreted via 

parallel transport along a closed curve in/ , ,  (P) ,  yields no phase shift (Boson case) or a 
phase shift - 1 (Fermion case) for ~p. 

(ii) Parastatistics. Vector bundles over In (P) corresponding to higher dimensional repre- 

sentations of  Sn are interpreted as parastatistics and appear in this approach as follows. Con- 
sider the configuration space D,1 (P) .  The right action r of  Sn on D11 (P) ,  r : D,, (P)  x Sn --+ 
Dn (P) ,  induces via pull back a natural left action T of Sn on the space of smooth square 

integrable sections ~p ~ seceC(Dn(P) x C), i.e. with s ~ Sn, ( T ( s ) ~ ) ( x )  := ( r *  I lp)(x). 

Close this space to the n-particle Hilbert space 7-/. In ~ the action T is completely 
reducible, T = OTx, with Tx irreducible and 7-[~ as the corresponding subspace of ~ .  The 
reduction gives (r~gz)(x) = (Tx(s - I )gz) (x)  for ~p 6 7-/), n secOC(Dn(P) x C), i.e. the ¢ 

are Tx-equivariant functions on Dn (M) with 'fibre' 7-/x = C k. 

Collect all representations equivalent to Tx for fixed )~. Then the set of equivariant gt 

generates a Ck-bundle, which is T)o-associated to the Sn bundle Dn (P)  over 1,1 (P).  

Alternatively, to get the same result, one can consider the Sn-bundle Dn (P)  over L, (P)  
fibrewise, i.e. restrict the ~ ' s  to each single Sn-orbit in Dn (P) .  Then the action T yields 
the regular n !-dimensional complex representation Treg of  31,. Each irreducible part Tz of 

T~eg now defines a Ck-bundle, Tx-associated to Dn (P) .  
For k = 1 we recover the two line bundles in (i) (Boson and Fermion case). 

For k > 1 we getparastatistics. Since we are concerned in this paper with line bundles only, 
we postpone this case and the corresponding generalizations to arbitrary P and arbitrary 

dimensions for later investigations. 
Note that in quantum Borel kinematics C k-bundles also appear in a physically and tech- 

nically different context. If  one assumes that the system has k internal degrees of freedom 
one has to realize 7-/via square integrable sections in C k-bundles over M [24], using similar 

arguments as in Section 1. In this case the classification of flat bundles is given via the set 
of  conjugacy classes in Hom(rrl (M), U(k)) .  
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